
Using Quantum Mechanics to Investigate the Location and
Diffusion of Hydrogen and its Isotopes in Metals

Matthew Stephen Dyer

Peterhouse

University of Cambridge

This dissertation is submitted for the degree of Doctor of Philosophy.



Declaration

This dissertation is my own work and contains nothing which is the outcome of work done

in collaboration with others, except as specified in the text and Acknowledgements.

This dissertation does not exceed 60,000 words in length.



Using Quantum Mechanics to Investigate the Location and Diffusion of
Hydrogen and its Isotopes in Metals

Matthew Stephen Dyer

The wave functions and energies of hydrogen and its isotopes, deuterium and tritium, were

calculated in stoichiometric palladium hydride (PdH), stoichiometric niobium hydride

(NbH), lithium imide (Li2NH) and model potentials. They were used to investigate the

importance in including quantum effects in determining the location of hydrogen in these

systems.

The relative stability of the two potential sites for hydrogen in palladium hydride, was

found to have a large dependence on the zero point energy of the hydrogen atom. Hydro-

gen in lithium imide was found to be delocalised in sites around the nitrogen atom. The

quantum tunnelling rate between these sites was calculated to be many times larger than

the classical rate.

An expression for the diffusion coefficient in terms of the wave functions and energies of

a system, derived from Kubo theory, was used to calculate the diffusion coefficients of

hydrogen and its isotopes in these systems. The different processes which contribute to

hydrogen diffusion were studied. It was found that it is necessary to include quantum

effects when considering the diffusion of hydrogen though materials.

Processes at energies lower than the classical barrier to diffusion were found to be im-

portant in all of the systems investigated. In palladium hydride, these processes usually

involved tunnelling from the octahedral to the tetrahedral site. In niobium hydride tun-

nelling between the ground states in neighbouring wells was found to contribute strongly

to diffusion.

Calculation of the diffusion coefficient in a model system of a one-dimensional potential

coupled to a harmonic oscillator showed that both coherent and incoherent tunnelling

processes contributed to diffusion. Coherent processes occurred without a change in in

the harmonic oscillator quantum state, whereas incoherent processes involved gaining or

losing phonons during the transition.
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Chapter 1

Classical and Quantum Mechanical

Approaches to Calculating Diffusion

Coefficients

1.1 An Introduction to Diffusion

Much of the content of this thesis concerns the phenomenon of diffusion. This section

gives a brief overview of the subject, both from a classical and a quantum mechanical

perspective. Hansen and McDonald’s book, Theory of Simple Liquids[1] and Atkin’s book,

Physical Chemistry[2] have been used for reference material throughout this introduction.

From a macroscopic perspective, diffusion is observed as the transport of matter along a

concentration gradient. Fick’s law states that the flux of matter, j (r, t), due to diffusion

is proportional to concentration gradient, ∇ρ (r, t), where ρ (r, t) is the particle density

at position r and time t.

j (r, t) = −D∇ρ (r, t) (1.1)

The constant of proportionality, D, is called the diffusion constant or diffusion coefficient.

It is a measure of the rate at which matter will flow along a given concentration gradient.

The continuity equation expresses the conservation of matter during diffusion

ρ̇ (r, t) +∇.j (r, t) = 0 (1.2)

1
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where ρ̇ = ∂ρ
∂t

. It can be combined with equation 1.1 expressing Fick’s Law, to give the

diffusion equation

ρ̇ (r, t) = D∇2ρ (r, t) (1.3)

1.1.1 Einstein’s Diffusion Coefficient

Einstein[3] showed that, in a system of diffusing independent classical particles, the solu-

tion of the diffusion equation gives the following relation for the diffusion coefficient, in

terms of the mean square displacement of the particles at time, t:

D = lim
t→∞

1

6t

〈
|r(t)− r (0)|2

〉
(1.4)

where 〈〉 represents a statistical average. This expression allows the diffusion coefficient

to be calculated very simply from a classical molecular dynamics simulation in which the

positions of the particles, r(t), are calculated at each time step.

In a system with finite volume equation 1.4 will always give a diffusion coefficient of zero

if the limit is taken to infinity, since the mean square displacement cannot grow larger

than the size of the system. In general, however, the ratio
〈
|r(t)− r (0)|2

〉
/6t will reach

a plateau value before the sides of the boxes are reached. It is this plateau value which

provides the definition of D for a finite system.

The displacement of a particle from its initial position r (0) can be expressed as an integral

over the particle’s velocity, u(t).

r(t)− r (0) =

∫ t

0

u (t′) dt′ (1.5)

Einstein’s expression for the diffusion coefficient can then be used to give a relation be-

tween the diffusion coefficient and the velocity autocorrelation function.

The classical time-correlation function between two variables, A(t) andB(t) is 〈A(t)B (0)〉.
If A and B are the same variable then the corresponding quantity is known as the au-

tocorrelation function 〈A(t)A (0)〉. In an isotropic system, the velocity autocorrelation

function is 〈ux(t)ux (0)〉 = 1
3
〈u(t).u (0)〉.
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Starting from equation 1.4 and using equation 1.5:

D = lim
t→∞

1

6t

〈
|r(t)− r (0)|2

〉
(1.6)

= lim
t→∞

1

6t

∫ t

0

dt′
∫ t′

0

dt′′ 〈u (t′′) .u (t′)〉 (1.7)

On changing variables t′, t′′ to t′, s = t′ − t′′ and integrating by parts this gives:

D =
1

3

∫ ∞

0

dt 〈u(t).u (0)〉 (1.8)

This expression is an example of a group of relations known as Green-Kubo relations.

They are derived by considering the statistical mechanics of non-equilibrium systems

(also called fluctuation-dissipation theory) and relate a macroscopic quantity to the time

integral over a time-correlation function of microscopic quantities. They will be discussed

in more detail in section 1.2.

1.1.2 Transition State Theory

The diffusion of particles in the condensed phase can often be successfully modelled as a

collection of particles jumping from one stable site to a neighbouring site via an energy

barrier.

Eyring[4] proposed that, for a system in which particles moved between equivalent sites,

the diffusion coefficient, D, could be related to the rate constant for the activated process,

k, and the distance between the sites, l, by the expression D = l2k.

This relationship can be demonstrated by considering a simple one-dimensional system

of identical sites, separated by a distance l. The rate of change of concentration at site i

is given by

ρ̇i =
∑

j

ρjKji − ρiKij (1.9)

where the sum over j is over all other sites and Kji is the rate constant for the process

of a particle jumping from site j to site i. Assuming that jumps only occur between

neighbouring sites and that the rate constants for these jumps is constant, Kji = k for

j = i± 1 and zero otherwise. The expression for ρ̇i then becomes

ρ̇i = ρi−1k − 2ρik + ρi+1k (1.10)
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The diffusion equation gives

ρ̇i = D
∂2ρi

∂x2
= D

ρi−1 − 2ρi + ρi+1

l2
(1.11)

where the second derivative is found using finite differences. The expression D = l2k is

then obtained by comparing equations 1.10 and 1.11.

The rate constant, k, can be estimated using the relation proposed by Eyring[5]:

k = κ
kBT

h

Q‡

Q0
e
− Ea

kBT (1.12)

where T is the temperature, kB is Boltzmann’s constant and h is Planck’s constant. Q0

is the partition function with the particle in the stable site, whereas Q‡ is the partition

function with the particle at the top of the barrier, neglecting the degree of freedom along

the path that the particle is moving. κ is the transmission coefficient and gives a measure

of the probability of the particle remaining in the new site rather than re-crossing the

barrier.

Assuming that barrier re-crossings do not occur during diffusion this gives the following

equation for the diffusion coefficient:

D =
l2kBT

h

Q‡

Q0
e
− Ea

kBT (1.13)

This expression gives a semi-classical method to calculate the diffusion coefficient. It takes

into account the quantised energy levels of the diffusing particles, but does not include any

effects due to quantum tunnelling or transitions between different quantum states during

diffusion. It is assumed that the motion of the particle can be accurately described by

classical motion on a potential energy surface.

1.1.3 Quantum Diffusion

The diffusion of particles with small mass through a medium cannot always be described

by purely classical or semi-classical techniques. Quantum tunnelling at energies below the

classical barrier to diffusion can contribute significantly to diffusion. There are different

types of tunnelling processes which can contribute to the diffusion of quantum particles.

Tunnelling can occur between the ground states of two neighbouring wells. No activation
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energy is required and the resulting diffusion is largely temperature independent. Ground

state tunnelling often only becomes important at low temperatures.

Diffusion can also occur due to tunnelling between two excited states, or between an

excited state in one well and a ground state in a different well. These are activated

processes, but the activation energy may be well below that predicted by classical theories.

Energy and momentum must be conserved in these transitions. Coherent tunnelling occurs

when the particle states in the two wells are coincident in energy. If the quantum states

in the two wells are not coincident then the energy difference can made up by transferring

energy to or from the lattice phonons in the system. This process is known as incoherent

tunnelling. These processes are summarised in figure 1.1

ii

i

iii

(a)

iv

iii

(b)

Figure 1.1: Diagrams showing (a) coherent and (b) incoherent tunnelling processes. The
red lines represent particle energy levels and the blue lines lattice phonon energy levels.
The figures show (i) ground state tunnelling, (ii) activated coherent tunnelling, (iii) the
classical barrier to diffusion and (iv) activated incoherent tunnelling

A fully quantum mechanical expression for the calculation of the diffusion coefficient can

be derived by considering the statistical mechanics of systems which are not in equilibrium.

1.1.4 Coupling to Other Nuclear Degrees of Freedom

The calculation of diffusion or reaction rates through a static one-dimensional potential

is often not sufficient to correctly describe the dynamics of a system with many nuclear

degrees of freedom. Coupling between the motion of the diffusing particle and the motion

of its surroundings can have a large effect on diffusion rates calculated both classically

and quantum mechanically.

In their book Chemical Dynamics at Low Temperature, Benderskii et al[6] review some

of the techniques used to include the coupling to other nuclear degrees of freedom in an
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approximate way.

It is not usually possible to include all of the nuclear degrees of freedom explicitly in a

calculation of a rate constant or diffusion coefficient, especially in the condensed phase.

A calculation including the full 3N nuclear degrees of freedom is likely to be too large to

be computationally feasible for all but the smallest of molecular reactions. In general it

is necessary to divide the system into one or more reaction coordinates which are treated

explicitly, and find some way to model the interaction of the remaining nuclear degrees

of freedom.

It is sometimes a sufficiently good approximation to treat all modes except the reaction

coordinate as a bath of oscillators which only act to modify the one-dimensional potential

through which the particle diffuses or the reaction progresses. In such an approximation

the bath of oscillators introduces a frictional force acting on the particle moving in the

one-dimensional potential. The study of this system is known as the dissipative tunnelling

problem and is described at length in Caldeira and Leggett’s paper[7].

If the conditions are such that only the lowest eigenstates in the initial and final positions

are occupied then the dissipative tunnelling problem can be reduced to that of a two-level

system[8]. Under the two-level system approximation the diffusing particle is assumed to

tunnel instantaneously with respect to low frequency oscillations in the bath, but with

a tunnelling matrix element which is modified by coupling to the high frequency bath

modes.

The dissipative tunnelling model is known to accurately represent the reduction in trans-

port rates due to coupling with other degrees of freedom. In extreme cases this coupling

can fully localise a particle in one well. However, it is also the case that strong coupling

with degrees of freedom outside the reaction coordinate can lower the reaction barrier

or reduce its width and hence promote transitions from one well to a neighbouring well.

Coupling to these modes is not well represented in the dissipative tunnelling model and

if important must be included in a different way.

Inclusion of the promoting vibrational modes can be included by introducing an exponen-

tial decay in the tunnelling matrix element, ∆, which depends on the promoting vibra-

tion’s coordinate, qp, and a constant, γ, where γ−1 is small compared to the tunnelling

distance.

∆ = ∆0e
−γqp (1.14)
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The above approximation was used by Borgis et al[9][10] to include coupling effects when

calculating proton and hydrogen transfer rates in solution. Their method allows the

calculation of hydrogen transfer rates in weak or moderate strength hydrogen bonded

systems across a double well potential, and includes the effects of interactions with a

polar solvent and the molecular vibrations which cause the barrier to fluctuate. The

transfer reaction rate is calculated by integrating over correlation functions available in a

molecular dynamics simulation.

In the field of hydrogen transfer in metals, Flynn and Stoneham[11] proposed a method for

calculating diffusion rates of hydrogen in 1970 which includes coupling to phonon modes

in the metal lattice.

After using the Born-Oppenheimer approximation to separate out the electronic degrees

of freedom, the eigenstates of the nuclei are expressed as products of orthogonal hydrogen

wavefunctions, which are localised at a particular interstitial site in the lattice, and a

lattice wavefunction describing the motion of the host lattice.

Expressions for the jump rate between two neighbouring wells are then derived starting

from the perturbation theory expression for the transition probability between two eigen-

states. The resulting expressions for the jump rates at low temperatures depend on the

tunnelling matrix element between states in neighbouring interstitial sites and the energy

cost of distorting the host lattice during the transition. Some attempt was also made

to include the effects of lattice-activated diffusion by considering the dependence of the

tunnelling matrix element on the lattice coordinates.

In 2004 Sundell and Wahnström[12] performed calculations on the niobium hydride and

tantalum hydride systems. Parameters for Flynn and Stoneham’s expression were calcu-

lated by constructing a three-dimensional potential energy surface for hydrogen in these

systems using density functional theory, and then finding the hydrogen ground state wave-

functions and energies on this surface.

Although Sundell and Wahnström’s results were in fair agreement with experiment, they

were only able to calculate rates over a very restricted temperature range. Their use of

Flynn and Stoneham’s expression restricts the validity of their calculations to temper-

atures low enough to assume that the only the hydrogen ground state wavefunction is

occupied, but high enough to treat the lattice phonon modes classically.

In chapter 6 it is shown that the expression used in this thesis to calculate diffusion coef-

ficients can be extended to include the effects of coupling to a fully quantum mechanical
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harmonic oscillator. In some cases it is not possible to separate out the other nuclear de-

grees of freedom on the grounds of having much slower or faster dynamics than hydrogen,

and it is hoped that this method will allow a more accurate calculation of the effect of

coupling between the motion of hydrogen atoms and other nuclei in these cases.

1.2 Statistical Mechanics of Non-Equilibrium Systems

The theories of classical statistical-mechanics of systems in equilibrium were formulated

many years ago by scientists such as Gibbs and Boltzmann.

During the mid-twentieth century several studies were made into the statistical mechanics

of irreversible processes, and particularly into transport processes such as diffusion, heat

transfer, and fluid flow. It was shown that transport properties, such as conductivity

and susceptibility, can be calculated by considering the linear response of a system to a

perturbation due an external applied field or force [13][14][15][16][17].

The theory results in expressions which relate macroscopically measurable quantities to

the infinite time integral over an autocorrelation function.

Kubo[14] begins by considering a system, characterised by a Hamiltonian, Ĥ, which has

been perturbed away from equilibrium by a time-dependent external force, F (t). From

t = −∞ to t = 0 the system is assumed to be in equilibrium with an equilibrium density

matrix ρ0. The external force is applied to the system at t = 0.

It is assumed that the perturbation is small, as the force is weak, and that the change

in the Hamiltonian is given by Ĥ′(t) = −AF (t). He then looks for the response to the

system in the linear approximation. This response, expressed in the change in the physical

quantity B, ∆B(t), is then expressed in terms of the natural motion of the system.

The deviation of the density matrix at time t away from its equilibrium value is ∆ρ(t),

such that ρ(t) = ρ0 + ∆ρ(t). The time-dependence of the density matrix, ρ, is given by

the equation of motion:

dρ(t)

dt
=

1

ih̄

[
Ĥ + Ĥ′(t), ρ(t)

]
(1.15)

=
1

ih̄

[
Ĥ, ρ(t)

]
+

1

ih̄

[
Ĥ′(t), ρ0

]
(1.16)

where [A,B] = AB − BA and only linear terms have been kept. The deviation of the
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density matrix at time t can be calculated by solving the previous expression:

∆ρ(t) = − 1

ih̄

∫ t

−∞
e−

i(t−t′)Ĥ
h̄ [A, ρ0] e

i(t−t′)Ĥ
h̄ F (t′)dt′ (1.17)

The response ∆B(t) of the quantity B is statistically calculated as a trace over B and

the change in the density matrix:

∆B(t) = Tr (∆ρ(t)B) (1.18)

= − 1

ih̄
T r

∫ t

−∞
e−

i(t−t′)Ĥ
h̄ [A, ρ0] e

i(t−t′)Ĥ
h̄ BF (t′)dt′ (1.19)

= − 1

ih̄
T r

∫ t

−∞
[A, ρ0]B(t− t′)F (t′)dt′ (1.20)

where B(t) is the solution to Ḃ(t) = − 1
ih̄

[
B(t), Ĥ

]
, B(0) = B.

The expression above for ∆B(t) can be considered in terms of an integral over a response

function φBA(t), the response of the system over an infinitesimal time period:

∆B(t) =

∫ t

−∞
φBA(t− t′)F (t′)dt′ (1.21)

φBA(t) = − 1

ih̄
T r [A, ρ0]B(t) (1.22)

The response of current in the µ-th direction when a pulse of electric field is applied in

the ν-th direction at t = 0 is

φµν(t) =
1

ih̄
T r ([qxν , ρ0] qẋµ(t)) (1.23)

=
1

ih̄
T r
(
ρ0

[
qx̂ν , q ˙̂xµ(t)

])
(1.24)

where q is the charge of a particle, and x̂ν is the position operator in the ν direction.

The last expression was obtained by cyclic interchange inside the trace:

Tr ([A, ρ0]B) =
∑
n,m,l

〈n|A|m〉 〈m|ρ0|l〉 〈l|B|n〉 − 〈n|ρ0|m〉 〈m|A|l〉 〈l|B|n〉 (1.25)

=
∑
n,m,l

〈m|ρ0|l〉 〈l|B|n〉 〈n|A|m〉 −
∑
n,m,l

〈n|ρ0|m〉 〈m|A|l〉 〈l|B|n〉 (1.26)

=
∑
n,m,l

〈n|ρ0|m〉 〈m|B|l〉 〈l|A|n〉 − 〈n|ρ0|m〉 〈m|A|l〉 〈l|B|n〉 (1.27)

= Tr (ρ0 [A,B]) (1.28)
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If the applied electric field is oscillatory, with an angular frequency ω, then the electrical

conductivity, σµν(ω), is given by

σµν(ω) =
1

V

∫ ∞

0

φµν(t)e
−iωtdt (1.29)

=
1

ih̄V

∫ ∞

0

Tr
(
ρ0

[
qx̂ν , q ˙̂xµ(t)

])
e−iωtdt (1.30)

where V is the volume of the system. The quantum mechanical current operator, ̂µ = q ˙̂xµ,

is related to x̂µ such that qx̂µe
−iωt can be replaced with i

ω
̂µe

−iωt. The previous expression

can then be rewritten in terms of the current operator rather than the position operator:

σµν(ω) =
1

h̄ωV

∫ ∞

0

Tr (ρ0 [̂ν , ̂µ(t)]) e−iωtdt (1.31)

Assuming Boltzmann statistics, the equilibrium density matrix, ρ0 = e−βĤ/Tr
(
e−βĤ

)
where β = 1/kBT .

The static eigenvectors of the time-independent Hamiltonian, Ĥ, are given by solving

the time-independent Schrödinger equation Ĥ |n〉 = En |n〉. Working in this basis the

expression for the electrical conductivity becomes

σµν(ω) =
1

h̄ωV Q

∫ ∞

0

∑
n

〈
n|e−βĤ [̂ν , ̂µ(t)] |n

〉
e−iωtdt (1.32)

where Q is the quantum mechanical partition function given by
∑

n

〈
n|e−βĤ|n

〉
. Intro-

ducing the fact that ̂µ(t) = e
iĤt
h̄ ̂µe

−iĤt
h̄ this becomes

σµν(ω) =
1

h̄ωV Q

∫ ∞

0

∑
n,m

e−βEne−iωt
(
e−

i
h̄
(En−Em)t 〈n|̂ν |m〉 〈m|̂µ|n〉−

e
i
h̄
(En−Em)t 〈n|̂µ|m〉 〈m|̂ν |n〉

)
dt (1.33)

Terms where m = n evidently do not contribute to the sum and can be removed.

Greenwood [18] obtained a similar expression for the conductivity in metallic systems by

solving the Boltzmann equation for a system of randomly placed scattering centres in a

crystal.
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The time integral can be carried out analytically since
∫∞

0
e−iωtdt = i

ω+i0
= πδ(ω). The

diagonal elements of the conductivity are then

σµµ(ω) =
π

h̄ωV Q

∑
n,m6=n

e−βEn| 〈n|̂µ|m〉 |2 ×(
δ

(
En

h̄
− Em

h̄
+ ω

)
+ δ

(
En

h̄
− Em

h̄
− ω

))
(1.34)

The δ-functions mean that contributions can only come when h̄ω = ±En − Em which

means that we can rewrite the expression

σµµ(ω) =
π

h̄ωV Q

∑
n,m6=n

e−
β
2
(En+Em)| 〈n|̂µ|m〉 |2 ×(

e
β
2
h̄ωδ

(
En

h̄
− Em

h̄
+ ω

)
+ e−

β
2
h̄ωδ

(
En

h̄
− Em

h̄
− ω

))
(1.35)

The static electrical conductivity is found in the zero-frequency limit, ω → 0. The dif-

fusion coefficient is related to the static electrical conductivity by the Nernst-Einstein

relation,

D =
kBTV

Nq2

∑
µ

lim
ω→0

σµµ(ω) (1.36)

where N is the number of conducting particles in volume V . This expression is valid for

conducting particles in which the motion of different types of particles is uncorrelated.

Using the Nernst-Einstein relation the previously calculated expression for the electrical

conductivity can be changed to an expression for the diffusion coefficient, D:

D =
kBTπ

NQh̄q2
lim
ω→0

1
ω

(
e

β
2
h̄ω − e−

β
2
h̄ω
) ∑

n,m6=n

e−βEn | 〈n|̂µ|m〉 |2δ
(
En

h̄
− Em

h̄

)
(1.37)

Taking the limit that ω → 0 this gives:

D =
π

NQq2

∑
n,m6=n

e−βEn| 〈n|̂µ|m〉 |2δ
(
En

h̄
− Em

h̄

)
(1.38)

The current operator is simply related to the quantum mechanical momentum operator,

p̂µ, by ̂µ = q ˙̂xµ = q
m
p̂µ where m is the mass of a particle. This gives a final expression

for the diffusion coefficient of

D =
π

NQm2

∑
n,m6=n

e−βEn| 〈n|p̂µ|m〉 |2δ
(
En

h̄
− Em

h̄

)
(1.39)
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Equation 1.39 gives an expression that allows the calculation of diffusion coefficients

once the eigenstates of a system are known. Rather than working in the space of the

full Hamiltonian of the system, it will be necessary to make approximations by only

considering certain degrees of freedom with quantum mechanics and to assume that good

results can still be obtained using single-particle wave functions and energies.

Although the time integral was performed to infinity, it should only be performed to a

large enough upper limit to average out microscopic fluctuations but before macroscopic

equilibrium is reached [13][15][16]. Introducing an upper limit to the time integral would

produce sinc-like functions with a finite width. The δ-function in equation 1.39 will be

replaced with a Gaussian function in the calculations which follow.



Chapter 2

Theoretical Methods

2.1 Density Functional Theory

The electronic structure calculations described in the following sections were carried out

using the Car-Parrinello molecular dynamics (CPMD)[19] and CASTEP[20] packages.

The packages use density functional theory (DFT) in a plane-wave basis to calculate the

electronic wave functions and energies of a system, given the nuclear coordinates.

In quantum mechanics the properties of a system are described by a Hamiltonian for the

system, Ĥ, and the corresponding set of many-body wave functions, {ΨN}, which satisfy

the time-independent Schrödinger equation, ĤΨN = ENΨN . In the Born-Oppenheimer

approximation[21] the many-body wave function is assumed to take the form

ΨN ({RI} , {ri}) = φN ({RI})ψn ({ri} ; {RI}) (2.1)

where φN ({RI}) depends only on the nuclear coordinates, {RI} and ψn ({ri} ; {RI})
depends on the electronic coordinates, {ri}, and only parametrically on {RI}. This

tends to be a good approximation due to the large difference in mass between nuclei and

electrons.

The electronic wave functions, {ψn} are found by solving the time-independent Schrödinger

equation with an effective Hamiltonian, Ĥelec, which depends parametrically on {RI} to

obtain an electronic energy, En, which also depends parametrically on {RI}; Ĥelecψn =

En ({RI})ψn.

13
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The electronic coordinates are then integrated out and the energy of the entire system

can be calculated using a Hamiltonian which only depends on the nuclear coordinates,

{RI}.

Within DFT the electronic energy of a system is expressed in terms of the electron density,

n (r), rather than the electronic wave function. Following Kohn and Sham[22], the electron

density can be expanded in a set of one-electron orbitals, the so-called Kohn-Sham (KS)

orbitals: n (r) =
∑

i |ψi (r))|2. A functional of the density is then used to calculate the

energy. The KS orbitals can be expanded in any suitable set of basis functions. A basis

of plane-waves is usually chosen if the calculations are performed for a periodic system.

In general the functional will include a term for the kinetic energy of a non-interacting

system of electrons, T , a simple Coulombic term, EH , given by the Hartree energy func-

tional, a term due to any external potential, Eext, and a term containing the corrections

necessary due to approximations in the kinetic energy and Coulomb functionals, known

as the exchange-correlation functional, Exc:

E [n] = T [n] + EH [n] + Eext [n] + Exc [n] (2.2)

The exchange-correlation energy functional is in general not known exactly, and an ap-

proximation to it must be made. It is often approximated with a functional based on

the exchange-correlation functional for an homogeneous electron gas, with extra terms in-

volving the local density (local density approximation (LDA) functionals) and optionally

the local gradient of the density (generalised gradient approximation (GGA) functionals).

The approximation used in this study is a GGA functional proposed by Perdew, Burke

and Ernzerhof (PBE)[23] which has been shown to give accurate energies and geometries

of systems in the condensed phase.

Once the energy functional is known, the electronic energy is then found by minimising

the functional with respect to the KS orbitals. The problem can be formulated as a set

of KS equations which can be solved for the KS orbitals:(
T̂ + VH + Vext + Vxc

)
ψi(r) = εiψi(r) (2.3)

where VH , Vext, and Vxc are the functional derivatives of EH , Eext, and Exc respectively. If

the potential is periodic then the equations can be solved using Bloch theory as described

in section 2.3. Alternatively, conventional CPMD performs minimisation of the energy

functional by applying dynamical simulated annealing to fictional dynamics of the KS
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orbitals. This method treats the electron density adiabatically on the zero temperature

Born-Oppenheimer surface.

2.1.1 Free Energy Molecular Dynamics

The conventional CPMD method is unable to correctly model metallic systems at finite

temperatures. Fractionally occupied states cannot be treated and the time steps needed

to accurately integrate the equations of motion are prohibitively small in metallic systems,

due to the fast dynamics of the electronic degrees of freedom.

The introduction of a free energy functional [24] allows for the fractional occupation of

states, and the functional can be efficiently calculated using an iterative diagonalisation

technique. This method has been included for all the CPMD calculations described in

this study.

Free energy molecular dynamics (FEMD) is based on the work of Mermin[25], who ex-

tended Hohenberg and Kohn’s[26] theory of a variational functional for the ground state

of a system to a finite temperature electron gas. Mermin showed the existence of a

grand potential functional which is minimal for the density of an electron gas in thermal

equilibrium, and that for this density, the functional gives the free energy of the system.

In FEMD a free energy functional, F , is introduced, which is stationary at the same

density as the Mermin functional, and allows this density to be computed,

F = Ω + µN + EII (2.4)

where µ is the chemical potential, EII is the ion-ion Coulomb energy, and Ω is the grand

potential for an interacting electron gas within DFT:

Ω [n(r), RI ] = − 2
β

ln det
(
1 + e−β(Ĥ−µ)

)
− 1

2

∫
drdr′

n(r)n (r′)
|r− r′|

−
∫
drn(r)

δΩxc

δn(r)
+ Ωxc (2.5)

Ωxc is the exchange correlation grand potential functional, β = 1/kBTe where Te is an

electronic temperature parameter, and Ĥ is the one-electron Hamiltonian from the usual

Kohn-Sham theory,

Ĥ = −1

2
∇2 + Veff (r) (2.6)
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where atomic units have been used and where

Veff (r) =
∑

I

VeI (r−RI) +

∫
dr′

n (r′)

|r− r′|
+
δΩxc

δn(r)
(2.7)

For a given effective potential, Veff , the resulting density, nout(r), is given by:

δΩ [n(r)]

δVeff (r)
= nout(r) (2.8)

and can be defined in terms of the one-electron states which are eigenstates of Ĥ, ψi:

nout(r) =
∑

i

fiψ
∗
i (r)ψi(r) (2.9)

where fi are the thermal Fermi-Dirac occupation numbers given by fi = 1/(1 + eβ(εi−µ)).

Using 2.8 and the thermodynamic relation (∂Ω/∂µ)n(r) = −N the functional derivative

of F can be calculated as:

δF
δn(r)

=

∫
dr [nout(r)− n(r)]

(
1

|r− r′|
+

δ2Ωxc

δn(r)n (r′)

)
(2.10)

The stationary point in F and the Mermin functional is found when self-consistency is

reached in the density (i.e. nout(r) = n(r)). To solve this problem F must be eval-

uated. This evaluation is carried out by diagonalisation of the density matrix, ρij =〈
ri

∣∣∣e−β
p
Ĥ
∣∣∣ rj

〉
, using Trotter factorisation to simplify the density matrix and the Krylov-

space (Lanczos) iterative diagonalisation method, allowing mixing of input and output

densities between iterations to prevent unstable charge oscillations arising.
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2.2 Pseudopotentials

Due to the rapid oscillations of the electronic wave function in the the region of a nuclear

core, and the high kinetic energy of the tightly bound core electrons, a plane-wave basis

set is poorly suited to describing the electronic wave function in the region of nuclear

cores. Performing an all-electron calculation would require a prohibitively high energy

cutoff for the plane-wave basis set.

Since the physical properties of solids are mainly dependent on the valence electrons, the

core electrons and ionic potential can be replaced with one alternative weaker potential.

This potential is known as a pseudopotential. It is also helpful to remove the oscillatory

nature of the wave functions in the core region, and a pseudopotential is constructed

so that this is the case. The new smoothed wave functions are known as pseudo-wave

functions. The pseudo-wave functions and pseuodopotentials are constructed so that they

match the real wave functions and potentials exactly beyond a certain cutoff radius, rc

(see figure 2.1).

The pseudopotentials used with CPMD were norm-conserving potentials, that is the

pseudo-wave functions and real-wave functions have identical charge densities in the

core region. They were generated according to the method suggested by Troullier and

Martins[27]. The calculations using CASTEP used the ultrasoft pseudopotentials pro-

posed by Vanderbilt [28].

r

Z/r

pseudoV

Ψpseudo

rc

Ψall−e

Figure 2.1: A schematic diagram of all-electron (solid) and pseudo (dashed) wave functions
and potentials
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2.3 Bloch Theory

In a periodic potential where aα is the periodicity in the xα direction, the single particle

density, |ψ(x)|2 must also have the same periodicity.

V (x + a) = V (x) ⇒ |ψ (x + a) |2 = |ψ(x)|2 (2.11)

Thus a relationship between ψ (x + a) and ψ(x) can be obtained by splitting ψ(x) into a

part u(x) which has the same periodicity as the lattice and a remaining phase factor.

ψ(x) = e−ik.xu(x) (2.12)

|ψ (x + a) |2 = ψ∗ (x + a)ψ (x + a) (2.13)

= eik.x+ik.ae−ik.x−ik.au∗ (x + a)u (x + a) (2.14)

= eik.xe−ik.xu∗(x)u(x) (2.15)

= ψ∗(x)ψ(x) = |ψ(x)|2 (2.16)

This is a statement of Bloch’s theorem [29]. The part of the wave function with periodicity

a is known as the Bloch function. The vector k must be a vector in the reciprocal space

of the system and can be used to label each wave function without loss of generality.

ψk(x) = e−ik.xuk(x) (2.17)

It is often useful to further divide the vector k into the sum of the vector pointing to the

closest point on the reciprocal lattice, g, (defined by gα = 2πGα

aα
where Gα is an integer)

and then a remainder which lies within the first Brillouin zone, k′. The wave function

is then labelled by g and k′. As e−ig.x is periodic in a this part can be absorbed into

the Bloch function. A deeper discussion of vectors in the reciprocal lattice of a system is

given in Brillouin’s book on Wave Propagation in Periodic Structures[30].

ψk,g(x) = e−ik′.xe−ig.xuk′,g(x) = e−ik′.xu′k′,g(x) (2.18)

After this point the vector k′ shall be re-labelled k, and u′ re-labelled as u in order to

keep the notation as uncluttered as possible.

The Bloch function and the corresponding single particle energy level can be found using
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the single particle time-independent Schrödinger equation.

− 1

2m
∇2e−ik.xuk,g(x) + (V (x)− εk,g) e

−ik.xuk,g(x) = 0 (2.19)

1

2m
e−ik.x (i∇+ k)2 uk,g(x) + (V (x)− εk,g) e

−ik.xuk,g(x) = 0 (2.20)

1

2m
(−i∇− k)2 uk,g(x) + (V (x)− εk,g)uk,g(x) = 0 (2.21)

At each point in the first Brillouin zone (i.e. each k-point) a set of Bloch equations can

be solved to obtain the wave functions and energies of the single particle states labelled

by the reciprocal lattice vector g or equivalently the quantum number n.

1

2m
(−i∇− k)2 uk,n(x) + (V (x)− εk,n)uk,n(x) = 0 (2.22)

The potential and the Bloch functions have periodicity a and can be expressed in a basis

of plane-waves with the same periodicity by a Fourier transform. These plane-waves have

wave-vectors which are the reciprocal lattice vectors, g.

uk,n(x) =
∑
g

ũk,n(g)e−ig.x (2.23)

V (x) =
∑
g

Ṽ (g)e−ig.x (2.24)

Entering these expressions into the Bloch equation for uk,n(x), equation 2.22, gives a set

of new equations to solve for the Fourier coefficients of the Bloch functions:

1
2m

(−i∇− k)2
∑
g

ũk,n(g)e−ig.x +

∑
g′

Ṽ
(
g′
)
e−ig′.x − εk,n

∑
g

ũk,n(g)e−ig.x = 0 (2.25)

∑
g

(
1

2m
|g + k|2 − εk,n

)
ũk,n(g)e−ig.x +

∑
g

∑
g′

Ṽ
(
g′
)
e−ig′.xũk,n(g)e−ig.x = 0 (2.26)

These equations can be simplified by multiplying by a plane-wave with arbitrary momen-
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tum, eig′′.x and integrating over x. Taking the first term in the equations:∫ a

0

dxeig′′.x
∑
g

(
1

2m
|g + k|2 − εk,n

)
ũk,n(g)e−ig.x

=
∑
g

(
1

2m
|g + k|2 − εk,n

)
ũk,n(g)δ (g − g′′) (2.27)

=

(
1

2m
|g′′ + k|2 − εk,n

)
ũk,n (g′′) (2.28)

The second term can be treated in the same way:∫ a

0

dxeig′′.x
∑
g

∑
g′

Ṽ (g′) ũk,n(g)e−i(g+g′).x (2.29)

=

∫ a

0

dx
∑
g

∑
g′

Ṽ (g′) ũk,n(g)e−i(g+g′−g′′).x (2.30)

=
∑
g

Ṽ (g′′ − g) ũk,n(g) (2.31)

In reality the Fourier transforms are carried out as finite sums over the reciprocal lattice

vectors, g. Usually an upper limit to the kinetic energy is chosen such that the sum is

performed over nmax g-vectors. A cutoff energy is chosen and a spherical cutoff applied

such that:
1

2m
|gmax + k|2 < Ecutoff (2.32)

In general, a much higher energy cutoff is required for convergence of electronic wave

functions than hydrogen wave functions, due to the mass dependence of the kinetic energy.

Combining the two terms back together gives the nmax equations:(
1

2m
|g′′ + k|2 − εk,n

)
ũk,n (g′′) +

∑
g

Ṽ (g′′ − g) ũk,n(g) = 0 (2.33)

and can be solved by diagonalising the nmax × nmax matrix whose elements are given by:

Ug,g′ =
1

2m
|g + k|2 δg,g′ + Ṽ (g − g′) (2.34)

This gives the Fourier coefficients for the nmax Bloch functions, uk,n, and their corre-

sponding energies, εk,n.
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Once the Bloch functions and energies have been calculated, the momentum matrix ele-

ment necessary for the calculation of the diffusion coefficient using equation 1.39 can be

obtained by integration in Fourier space:

〈ψk′,n′|p̂x|ψk,n〉 = −i
∫ ∑

g

ũ∗k′,n′ (g) ei(g′+k′).x∇x

∑
g′

ũk,n(g)e−i(g+k).xdx (2.35)

= −
∫ ∑

g,g′

ũ∗k′,n′ (g
′) ũk,n(g) (g + k) ei(g′−g+k′−k).xdx (2.36)

= −
∑
g

ũ∗k′,n′(g) (g + k′) ũk,n(g)δk′,k (2.37)



Chapter 3

Palladium Hydride

Palladium hydride has been the subject of many experimental and theoretical studies over

the past 100 years. Extensive academic interest in the subject has arisen from its unusual

properties and connected technological applications.

In many other metals, addition of hydrogen causes severe embrittlement and the loss of

electrical conductivity. This is not the case with palladium. The high diffusion rates of

hydrogen through palladium, and the large volumes of hydrogen that palladium is able

to absorb, allow palladium hydride to be used as a hydrogen diffusion membrane and a

potential hydrogen storage medium. Palladium is also used extensively as a hydrogenation

catalyst.

An extensive review of early experimental work on palladium hydride is presented in

Lewis’ The Palladium Hydrogen System[31]. More information can be found in Völkl

and Alefeld’s book Hydrogen in Metals[32], and a more recent review was published by

Flanagan and Oates in 1991[33].

The palladium atoms in both bulk palladium and palladium hydride have been shown to

have a face centred cubic (FCC) structure. Two main interstitial sites exist in the FCC

structure, one with tetrahedral symmetry and one with octahedral symmetry. The FCC

unit cell with the interstitial sites marked can be seen in figure 3.1.

Palladium hydride has been shown to exist in two concentration dependent phases. The α

phase occurs at low hydrogen concentrations (PdHx x < 0.1) in which the hydrogen atoms

are randomly distributed in the octahedral interstitial sites within the palladium lattice

and are well separated from each other. At higher concentrations (x > 0.6) the β phase

22
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Figure 3.1: The unit cell of a face centred cubic lattice with the tetrahedral and octahedral
interstitial sites marked by red spheres.

is formed in which near stoichiometric (x = 1) regions are formed in which the hydrogen

atoms occupy the octahedral interstitial sites forming a rock salt (NaCl) structure. The

two phases coexist at intermediate concentrations.

Bulk palladium has a lattice constant, a, of 3.891 Å at room temperature [34] which

expands with the addition of hydrogen to roughly 3.9 Å in the α phase and between 4.0

Å and 4.1 Å in the β phase[35]. Ross et al measured the lattice constant of PdH0.99 at

100K to be 4.095 Å[36].

3.1 Preliminary Studies

Bulk palladium and stoichiometric palladium hydride (PdH) were studied using the CPMD

package[19] to perform electronic structure calculations using density functional theory

(DFT) in a plane-wave basis set. Calculations were performed using a norm-conserving

Troullier-Martins [27] pseudopotential for the palladium atoms. The density functional

proposed by Perdew, Burke, and Ernzerhof (PBE)[23] within the generalised gradient

approximation (GGA) was used. In addition a free energy functional [24] was included

to allow the accurate calculation of metallic states.
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3.1.1 Bulk Palladium

The lattice constant and bulk modulus of bulk palladium in an FCC lattice were calculated

by performing single point calculations of the system with different values of the lattice

constant, a, and fitting the results to a polynomial curve. The calculations were found to

be converged with a plane-wave cutoff of 50 Ryd (680 eV) and were performed on a 163

k-point grid.

The lattice constant was calculated to be 3.97 Å and the bulk modulus 171 GPa in

reasonable agreement with experimental values of 3.89 Å[34] and 180–195 GPa[37][38][39].

Density functionals using generalised gradient approximations are known to overestimate

the lattice constants of transition metals and underestimate their bulk moduli.

3.1.2 Palladium Hydride

Similar calculations were carried out using stoichiometric palladium hydride with the

hydrogen atom in the octahedral and tetrahedral interstitial sites. In both cases a plane-

wave cutoff of 60 Ryd (820 eV) and a k-point mesh of 123 points was found to be sufficient

to obtain converged results.

With the hydrogen atom in the octahedral site the lattice constant, a, was calculated to

be 4.15 Å and with the hydrogen in the alternative tetrahedral site it was found to be

4.26 Å. Experimentally the lattice constant of almost stoichiometric PdH was found to be

4.095 Å at 100K[36] and predicted to be 4.09 Å for PdH1 by Schirber and Morosin[40].

The DFT calculations show that the most stable configuration is found with the hydrogen

in the tetrahedral site at a = 4.26 Å. This configuration was found to be 70 meV lower

in energy than that with the hydrogen in the octahedral site at a = 4.15 Å. Even at a =

4.15 Å the tetrahedral site is found to be more stable by 11 meV.

The relative stabilities of the octahedral and tetrahedral sites are reversed when the

zero point energy (ZPE) of the hydrogen atom is included. The ZPE was estimated by

shifting the hydrogen atom away from a site and recalculating the energies using DFT.

The curvature of the resulting potential was estimated using finite differences and the

ZPE of the hydrogen atom calculated using the harmonic approximation.

The ZPE of the hydrogen at the octahedral site, with a = 4.15 Å, was calculated to

be 68 meV, the ZPE of hydrogen in the tetrahedral site at the same lattice constant
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was calculated to be 194 meV. Including the ZPE of the hydrogen atom, the octahedral

site becomes the most stable, as suggested by experiment[41]. At the equilibrium lattice

constant of 4.26 Å the ZPE of the hydrogen atom in the tetrahedral site drops to 169

meV.

The bulk modulus of PdH with the hydrogen in the octahedral site was calculated to be

179 GPa, close to the experimental value of 183 GPa obtained for PdH0.76 by Nygren and

Leisure [38].

3.2 Hydrogen Energy Levels

Several investigations have been made into the excitation energies between hydrogen and

deuterium vibrational states using inelastic neutron scattering (INS)[42][36][43]. The vi-

bration spectra were measured for both the α and β phases of PdHx and PdDx. The

spectra were interpreted by fitting to results calculated using a three-dimensional oscil-

lator. The potential in the direction of the nearest palladium atoms was found to be

strongly anharmonic.

Alongside the experimental studies, Elsässer et al performed calculations of the vibrational

energy levels of hydrogen and deuterium in palladium using ab initio techniques [44][45].

A mixed basis of plane-waves and localised functions was used to calculate the total

energy of the system with the hydrogen atom at different positions within the super-cell.

The calculations used DFT within the local-density-functional approximation (LDA). The

core electrons of the palladium atom were replaced by a norm-conserving pseudopotential

and calculations were made over a suitably large k-point grid. The equilibrium lattice

constant was calculated to be 4.07 Å.

The Fourier components of a three-dimensional adiabatic potential for the hydrogen atom

were fitted to the points calculated using DFT, and the hydrogen states were calculated

by solving Bloch equations as described in section 2.3.

The resulting energy levels were compared with those calculated using a harmonic approx-

imation to the potential, and a potential in which anharmonicity was included perturba-

tively. The Fourier technique was found to better reproduce experimental values and the

calculated energy levels were used to interpret the available date from INS studies.
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Using a similar procedure to that employed by Elsässer et al, a potential was built by

repeatedly carrying out single point electronic structure calculations, with the hydrogen

atom at different locations within the FCC unit cell with a lattice constant of 4.16 Å.

The hydrogen atom was placed at the points on a 323 cubic grid which are unrelated

by symmetry, and the total energy of the system calculated in a plane-wave basis using

DFT with the PBE GGA functional, a free energy functional, and a Troullier-Martins

pseudopotential for the Pd atoms. The calculations were carried out over a 123 k-point

mesh with a plane-wave cutoff of 60 Ryd (820 meV). A contour plot of the potential in

the 110 plane of the lattice can be seen in figure 3.2.

 21/2 a0

a

0

O

T

T

Figure 3.2: A contour plot of the potential in the 110 plane of the PdH lattice. The
positions of some tetrahedral (T) and octahedral (O) sites are labelled, the others can be
inferred by symmetry. Palladium atoms are located at the corners of the plot and at the
centre of the upper and lower borders. Contours are placed at intervals of 140 meV.

Once the potential for the hydrogen atom was obtained on the real space grid, a Fourier

transform was taken and the hydrogen wave functions and energy levels calculated using

Bloch theory. Where it was necessary to represent the wave function on a more dense

grid than the potential, the extra points were interpolated from the original potential on

the 323 grid. The wave functions and energies were calculated at the Γ-point (k=0).
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It is assumed that interactions between different hydrogen atoms are included in the

potential calculated using DFT. There are no other hydrogen interaction terms in the

Bloch equations solved for the wave functions and energies.

The ground state energies (E0,|000〉) for 1H and 2D in the octahedral and tetrahedral sites,

and the excitation energies in each well (eM,|µ〉) are shown in tables 3.1 and 3.2. The states

are labelled according to the scheme used by Elsässer et al, in which M is the number

of energy quanta involved in the excitation and |µ〉 shows the eigenfunctions into which

the quanta are placed. The tables show results from INS studies, the work of Elsässer

et al, and the energies calculated using the method described above. The energies were

calculated both at the experimentally determined lattice constant of 4.095 Å and 4.16 Å,

close to the calculated value.

The states |A〉, |B〉, |C〉 are defined by Elsässer et al as follows:

|A〉 =
(
1/
√

2
)

(|200〉 − |020〉) (3.1)

|B〉 =
(
1/
√

6
)

(|200〉+ |020〉 − 2 |002〉) (3.2)

|C〉 =
(
1/
√

3
)

(|200〉+ |020〉+ |002〉) (3.3)

The ground state energies and excitation energies calculated in this study are lower than

those calculated by Elsässer et al which is consistent with the use of a larger lattice

constant, and hence a shallower potential. As in the study of Elsässer et al excitation

energies involving double excitation in any one direction (for example e2,|200〉) are found to

be higher than predicted using a harmonic potential (i.e. greater than twice e1,|100〉). This

is due to the anharmonicity of the potential in the direction of the surrounding palladium

atoms which has a shallow well which becomes very steep.

The different states can be identified by their degeneracies and by viewing real space plots

of the related wave functions. Plots of relevant wave functions can be seen in figure 3.3.

The states labelled E0,|000〉, e1,|100〉, e2,|110〉 and e3,|111〉 have s, p, d and f-like symmetries

respectively. As predicted, the state labelled e2,|C〉 is the in-phase combination of three

different 2p-like states.
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Table 3.1: Zero-point energies and excitation energies for 1H, 2D and 3T in the octahedral
site in meV

1H 2D 3T
E0,|000〉
a = 4.16 Å 61 39 28
a = 4.095 Å 79
Calc.[45] 78 51 40
e1,|100〉
a = 4.16 Å 54 34 25
a = 4.095 Å 64
Calc.[45] 62 40 32
Expt. (β phase) 60[42], 56[36], 57[43] 40[42]
Expt. (α phase) 69[42] 46.5[42]
e2,|110〉
a = 4.16 Å 104 65 50
a = 4.095 Å 123
Calc.[45] 117 78 61
Expt. (β phase) 110[36], 115.5[43]
Expt. (α phase) 115[42]
e2,|C〉
a = 4.16 Å 123 78 60
a = 4.095 Å 142
Calc.[45] 132 88 69
Expt. (β phase) 135[36], 139[43]
Expt. (α phase) 137[42]
e2,|A〉 = e2,|B〉
a = 4.16 Å 133 82 62
a = 4.095 Å 151
Calc.[45] 147 94 73
Expt. (β phase) 148[36], 155[43]
Expt. (α phase) 156[42]
e3,|111〉
a = 4.16 Å 148 95 73
a = 4.095 Å 178
Expt. (β phase) ≈ 170 [43]
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Table 3.2: Zero-point energies and excitation energies for 1H, 2D and 3T in the tetrahedral
site in meV

1H 2D 3T
E0,|000〉
a = 4.16 Å 171 114 109
a = 4.095 Å 207
Calc.[45] 213 150 123
e1,|100〉
a = 4.16 Å 121 86 71
a = 4.095 Å 128
Calc.[45] 92 77

Eoct
0,|000〉

Etet
0,|000〉

e3,|111〉

e1,|100〉

e2,|C〉

etet
1,|100〉

e2,|110〉

e2,|A/B〉

Figure 3.3: The real part of some 1H wave functions labelled in a similar way to table 3.1
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3.3 Hydrogen Diffusion

3.3.1 Experimental Studies

The temperature dependence of the diffusivity of hydrogen and its heavier isotopes in

palladium has been studied extensively using many different techniques. A review of

many of the earlier studies is provided by Völkl and Alefeld[46].

Hydrogen and its isotopes are found to diffuse with Arrhenius behaviour in the tem-

perature regions investigated and the diffusion coefficients can then be fitted with an

expression of the form:

D (T ) = D0e
− Ea

kBT (3.4)

A collection of values of D0 and Ea for fits of experimentally determined diffusion coeffi-

cients at temperatures above 200 K is given in table 3.3.

In all cases in which the diffusion of the two isotopes have been compared the activation

energy of deuterium is less than that of hydrogen. This leads to an inverse isotope effect

in which the heavier isotope, deuterium, diffuses faster than the lighter, hydrogen. There

is currently insufficient evidence to comment on the relative diffusion rate of tritium,

although Völkl and Alefeld[46] suggest that tritium has a lower rate of diffusion than the

other two isotopes, and the activation energy given by Sicking and Buchold[47] is high

compared to that obtained for the other isotopes in other studies.

There is some evidence from NMR studies that at low temperatures (< 200 K), hydrogen

diffuses with a much reduced activation energy. Cornell and Seymour [48] find an activa-

tion energy of 100±20 meV between 100 K and 195 K in PdH0.7, although it is stressed

that this data is not as reliable as that recorded at higher temperatures.

There has been much discussion over the mechanism of hydrogen diffusion in palladium.

Bohmholdt and Wicke’s work[49] suggests two possible mechanisms. The first is a simple

transition from one octahedral site to the neighbouring site. The second is a similar

transition involving the hydrogen atom moving through the tetrahedral site in-between

the two octahedral sites, but not getting trapped there.

Relaxation times calculated in NMR studies suggest that only one process is impor-

tant. A model considering only jumps between neighbouring octahedral sites fits the data

well[48][50]. Studies using other methods have suggested that the diffusion mechanism
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may be more complicated. Beg and Ross[51] suggest that in the β-phase diffusion is

modelled more accurately by considering other processes alongside jumps between near-

est neighbour octahedral sites, such as non-nearest neighbour jumps and jumps involving

the tetrahedral sites. Similar comments have been made by Rowe et al[41], Kuballa and

Baranowksi[52] and Majorowski and Baranowski[53].

Two paths for motion in-between two octahedral sites are shown in figure 3.4. One involves

direct motion from one site to the next, the other involves passage through an intervening

tetrahedral site. The hydrogen atom may or may not be trapped in the tetrahedral site

as it passes through.

Figure 3.4: Two paths between neighbouring octahedral sites (red) The tetrahedral site
is marked in green.
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3.3.2 Simple Estimation of Activation Energies

A simple estimation of the activation energy was made by dragging the hydrogen atom

from the octahedral site to a neighbouring tetrahedral site or octahedral site and per-

forming DFT calculations along the path. The palladium atoms were held rigid during

the procedure, with a lattice constant of 4.15 Å.

The transition state for the path from the octahedral to tetrahedral site was found at

(0.35,0.35,0.35). The barrier from the octahedral site to this point, ignoring ZPE, was

calculated as 198 meV, and from the tetrahedral site was 209 meV.

The ZPE of the hydrogen atom at the transition state was estimated by performing a

similar calculation to that described in section 3.1.2 and including the ZPE from the

two modes perpendicular to the diffusion path. The ZPE at the transition state was

calculated as 182 meV. The activation energies including ZPEs are then 312 meV from

the octahedral site and 197 meV from the tetrahedral site.

Assuming that the ZPE for a deuterium atom is 1√
2

times that of the hydrogen atom, a

similar calculation gives an activation energy of 279 meV from the octahedral site and

201 meV from the tetrahedral site. Schematic diagrams of these calculations can be seen

in figure 3.5.

Although the estimated activation barriers are considerably larger than the experimental

values discussed in the previous section, the inverse isotope dependence of the activation

energies has been reproduced. The ZPE of the diffusing atom at the transition state is

high since the atom must pass between three close palladium atoms. This ZPE is reduced

by a much larger amount than the ZPE in the relatively shallow octahedral well when

moving to a heavier isotope.

A similar procedure was carried out for the path directly linking two neighbouring octa-

hedral sites. The activation energy for this process, ignoring ZPEs, was calculated to be

1160 meV. This is much higher than the barrier to the tetrahedral site. The hydrogen

atom is not at a true transition state at the top of the barrier since motion towards both

the octahedral and tetrahedral sites is downhill. Only the mode involving motion towards

the neighbouring palladium atoms has positive curvature.

The calculated barriers are in general agreement with the barriers calculated by Elsässer

et al using a similar method with a LDA functional[45].
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The path between two octahedral sites via the tetrahedral site is a much lower energy

process. Diffusion is much more likely to occur as a result of a mechanism involving this

path than by direct motion between two octahedral sites.
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(a)

TetTSOct

68
194

182

198

312

209

197

no ZPE
1H, ZPE
2D, ZPE

(b)

TetTSOct

48
137

129

198

279

209

201

no ZPE
1H, ZPE
2D, ZPE

Figure 3.5: A schematic diagram of the diffusion path for (a) 1H and (b) 2D from the
octahedral site to the tetrahedral site. Calculated ZPEs and activation energies are in
meV. The curve for the other isotope has been included for comparison.
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3.3.3 Kubo Formula

The energies and wave functions for hydrogen and its isotopes calculated in section 3.2

were used in equation 1.39 to calculate diffusion coefficients at different temperatures.

Computational Details

The δ-function in equation 1.39 was replaced with a Gaussian function with finite width.

δ (EN − EM) ≈ 1

σ
√

2π
e

(EN−EM )2

2σ2 (3.5)

The width, σ,was chosen by performing calculations with varying widths and choosing a

width in the region where the diffusion coefficients varied slowly with respect to changing

it. A set of diffusion curves with varying σ can be seen in figure 3.6. In the following

calculations the width was chosen to be 1 meV.

The diffusion coefficients calculations were converged with respect to the number of plane-

waves used to calculate the energies and wave functions, and the number of states included

in the sum over momentum matrix elements in equation 1.39. A summary of the param-

eters required for convergence is given in table 3.4.

Table 3.4: Converged parameters for diffusion coefficient calculations.

1H 2D 3T

Size of grid used for wave function 483 643 803

Corresponding plane-wave cutoff [eV] 0.68 0.61 0.63
Number of states included in sum 800 1200 3000

All calculations were carried out at the Γ-point (k=0). The states studied in section 3.2

were well bound and a test calculation on a 63 k-point grid showed little difference in the

diffusion coefficients when other k-points were included.
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Figure 3.6: The diffusion coefficient of 1H in PdH calculated with varying Gaussian widths,
σ.
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Results and Discussion

The diffusion coefficients of 1H, 2D and 3T were calculated in stoichiometric palladium

hydride over a range of temperatures. The calculations were performed at lattice constant

of 4.16 Å close to the theoretically predicted value. The resulting diffusion curves can be

seen in figure 3.7.
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-10

-8

-6

-4

 1  2  3  4  5  6  7  8  9  10

100200500

Lo
g 1

0(
D

) 
[c

m
2 s-1

]

1000/T [K-1]

T [K]

1H
2D
3T

Figure 3.7: The diffusion coefficients of 1H, 2D and 3T over a temperature range of 100
K – 1000 K

The diffusion curves between 250 K and 500 K in figure 3.7 were fitted to Arrhenius

expressions for comparison with experiment. The fitted values of D0 and Ea can be seen

in table 3.5.
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Table 3.5: Parameters of an Arrhenius fit of diffusion coefficients. between 250 K and 500
K

1H 2D 3T

D0 [10−3 cm2s−1] 2.7 0.35 0.23
Ea [meV] 274 263 222

The activation energies for 1H and 2D obtained from the Arrhenius fits fall within the range

of values obtained by experimental methods (see table 3.4). The inverse isotope effect

in the activation energies is reproduced with a ratio Ea(
1H)/Ea(

2D) of 1.04 compared to

1.07–1.10 from the data in table 3.4. The values are closest to those given by Majorowski

and Baranowski[53] who used samples near to stoichiometric palladium hydride.

Although the value of D0 falls roughly within the range of experimental data for 1H it

is lower than that obtained by Majorowski and Baranowski and Holleck and Wicke[54],

who obtained similar activation energies. The value of D0 for 2D is lower than would be

expected. As a result, the rate of diffusion of both 1H and 2D is underestimated with

respect to experiment for temperatures above 250 K and the low value of D0 for 2D means

that there is no inverse isotope effect in the diffusion coefficients themselves, in spite of

the one present in the activation energies. An inverse isotope is only seen in figure 3.7 at

low temperatures (< 120 K).

The values of D0 and Ea obtained for 3T are considerably different from those obtained by

Sicking and Buchold[47]. Their investigation was performed with a very low concentra-

tion of tritium in palladium, as there is little other experimental evidence with which to

compare these values. Following a similar argument to that given in the previous section

(3.3.2), tritium would be expected to have a lower barrier to diffusion than hydrogen and

deuterium as obtained in these calculations, rather than a higher barrier as shown by

Sicking and Buchold.

The sum over states in equation 1.39 only contains contributions from states which are

close in energy due to the δ-function in the formula. As a result, it is possible to collect

contributions from different regions of the energy spectrum and analyse the results in

terms of which states contribute to diffusion.

Plots of the contributions from separate regions of the energy spectrum can be seen in

figures 3.8 and 3.9. The proportion of each contribution arising from the octahedral and

tetrahedral wells is shown alongside the total contribution at each energy.
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By integrating each wave function over the octahedral and tetrahedral sites it was pos-

sible to identify each state as either predominantly bound in the octahedral site, in the

tetrahedral site, or spread over both sites. The proportion of each contribution arising

from the octahedral and tetrahedral wells is shown alongside the total contribution at

each energy.
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Figure 3.8: The contributions to the diffusion coefficient from different regions of the
eigenspectrum below 500 meV above the ground state for (a) 1H and (b) 2D
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Figure 3.9: The contributions to the diffusion coefficient from different regions of the
eigenspectrum below 500 meV above the ground state for 3T
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For 1H diffusion above 250K there are three main regions in the energy spectrum which

contribute to diffusion. The lowest in energy is at 228 meV above the octahedral ground

state. This is considerably below the 312 meV barrier predicted for classical diffusion.

Each contribution involves a pair of states. The largest contributions come from pairs of

states of which one state is in the octahedral sites and the other is one of the e1,|100〉 states

in the tetrahedral sites described in section 3.2. There are also contributions involving

states in which both sites are occupied, but in which there is no occupation of the barrier

region in between the sites. A plot of some of the contributing states in this region is

shown in figure 3.10.

E103

E113, e
tet
1,|100〉

E105, e
tet
1,|100〉

E125

Figure 3.10: The real part of some of the 1H wave functions contributing to diffusion at
228 meV above the ground state. The 103-rd and 105-th states form a contributing pair
in which the 103-rd is in the octahedral sites, and the 105-th in the tetrahedral sites. The
113-th and 125-th states form a pair in which the 113-th state is in the tetrahedral well
and the 125-th in both.

The next lowest energy contributions come from 305–307 meV and 328 meV in the region

of the classical barrier. These contributions arise once again between pairs of states of

which one state is predominantly in the tetrahedral sites and the other is either in the

octahedral sites or shared between the two sites. The states are now more diffuse and

some occupation is seen in the region of the barrier between the octahedral and tetrahedral
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sites. Plots of one pair of contributing states in the 307 meV region is shown in figure

3.11.

E191 E203

Figure 3.11: The real part of two of the 1H wave functions contributing to diffusion at
307 meV above the ground state. The 191-st and 203-rd states form a contributing pair
in which the 203-rd is predominantly in the tetrahedral site, and the 191-st is spread over
the two sites.

Hydrogen diffusion occurs when states which are in the octahedral and tetrahedral wells

become close in energy. This can occur either below or above the classically allowed

barrier, and contributions come from both types of processes. The processes involving

diffusion below the barrier are still activated processes. The hydrogen must be excited

from the octahedral ground state into an excited state in the octahedral well, from which

it can tunnel into the tetrahedral well. Thus diffusion at temperatures above 250 K occurs

by paths between the octahedral ground states via paths involving excited states in the

tetrahedral well, and not directly between two states in different octahedral wells.

The activation energy seen in the Arrhenius fits to the diffusion curves arises by a weighted

average of the contributions from different regions of the energy spectrum.

The contributions to diffusion above 250 K for 2D arise at lower energies than those in
1H. They arise from pairs of states at 243 meV, 292 meV, 305 meV and 420 meV. As a

result the activation energy for 2D diffusion is lower than that for 1H. The inverse isotope

effect in the activation energies occurs as a result of the increase in density of states at

low energies on increasing mass. The same effect also leads to a lower activation energy

for 3T.

The pairs of states contributing to 2D and 3T diffusion are similar to those contributing

to 1H diffusion. They involve pairs in which one state is predominantly in the tetrahedral

site and the other is either in the octahedral site or is a mixture of states in both sites.

This suggests that the mechanism for diffusion for all three isotopes is similar.
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Diffusion of hydrogen isotopes in palladium hydrides at low temperatures does not follow

the Arrhenius law seen above 250 K. The curves in figure 3.7 show considerable deviation

from Arrhenius behaviour in the low temperature regions. The diffusion coefficients for
1H and 2D from 10 K to 250 K are shown in figure 3.12. In addition the contributions to

the diffusion coefficient at 50K are shown in figure 3.13.
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Figure 3.12: The diffusion coefficients of 1H and 2D in the temperature range 10–250 K.
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Figure 3.13: The contributions to (a) 1H and (b) 2D diffusion from different regions of
the energy spectrum at 50 K.

The contributions to 1H diffusion at 100 K shown in figure 3.8(a) between pairs of states

at 54 meV and 110 meV above the octahedral ground state. These contributions arise

due to tunnelling between the first excited states e1,|100〉 in different octahedral wells (54

meV) and the ground state in different tetrahedral wells (110 mev).
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At 50 K the only noticeable contribution occurs due to tunnelling between octahedral

ground states. The diffusion process is no longer an activated process and as a result the

diffusion coefficient no longer varies with temperature.

2D diffusion at 100 K shows contributions at 76–78 meV, 137 meV and 160–162 meV.

The contributions at 76–78 meV arise from pairs of states in which one state is a ground

state in the tetrahedral well, and the other is one of the e2,|C〉 states in the octahedral

well which are at a similar energy. The contributions at 137 meV come from tunnelling

between excited states in different octahedral wells and those at 160–162 meV from pairs

of states in which one is an excited state in the octahedral wells, and the other is one of

the first excited states in the tetrahedral wells.

At 50 K only tunnelling between octahedral ground states and the contributions at 76–78

meV are seen for 2D. Below 30 K only the octahedral ground states are occupied and the

diffusion coefficient becomes invariant with temperature, as seen in 1H. The 2D ground

state wave functions are more tightly bound, and hence have less overlap than the 1H

wave functions, leading to slower diffusion for 2D in this temperature range.

The major contribution to 3T diffusion at 100 K is from pairs of excited states in the

octahedral wells at 104 mev.

Since at low temperatures the states which contributed strongly to diffusion above 250 K

are thermally inaccessible different states contribute to diffusion. As well as contributions

due to tunnelling between the octahedral and tetrahedral wells, tunnelling between states

which are both in octahedral or both in tetrahedral wells now contributes. At low enough

temperatures diffusion is dominated by tunnelling between ground states in the octahedral

wells since other states are not accessible.

Lattice Phonons

In the previous calculations it has been assumed that the lattice remains static as the

hydrogen atom diffuses from one site to the next. The lattice vibrations have been used

as a bath to allow occupation of states according to Boltzmann statistics.

The Debye frequency of palladium (the maximum frequency of phonons in the crystalline

solid) is 394.4 cm−1. This gives a maximum separation of phonon energy levels of 49 meV

in pure palladium, a similar magnitude to the gaps seen in the vibrational energy levels of

the hydrogen isotopes in palladium hydride. It seems likely that coupling between lattice
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phonon modes and hydrogen wave functions will have an effect on the rates of diffusion

of hydrogen and its isotopes.

The full coupled system is too large a problem to tackle exactly. Consideration of a simple

model potential, based on hydrogen transport in a one-dimensional potential coupled to

a fully quantum mechanical harmonic oscillator, may give an insight into the effect that

coupling to phonons has on diffusion, and how best these effects can be included when

calculating diffusion coefficients in more realistic systems.

3.4 Conclusions

A quantum mechanical treatment of hydrogen and its isotopes in palladium gives an

insight into both the location of hydrogen in palladium hydride and its diffusion.

The ground states and low lying excited states of hydrogen, deuterium and tritium are all

found to be tightly bound in one of two types of sites, octahedral sites or the tetrahedral

sites. The ground state in the octahedral site is more stable than that in the tetrahedral

site by 110 meV for 1H, 76 meV for 2D and 60 meV for 3T. Assuming Boltzmann statistics

this would give an occupation of ≈ 1 % 1H for the tetrahedral ground state, and ≈ 10 %
3T at 298 K.

Density functional theory calculations predict the tetrahedral site to be more stable than

the octahedral site. A quantum mechanical approach to hydrogen dynamics is essential,

since including the hydrogen zero point energies reverses the relative stabilities of the two

sites.

Using the calculated wave functions and energies in a equation 1.39 to calculate diffu-

sion coefficients shows that above 250 K the temperature dependence of the diffusion

coefficients is Arrhenius.

At these temperatures diffusion occurs by two types of processes. Diffusion occurs by

occupation of diffuse states above the classical barrier, and by tunnelling between pairs

of states below the classical barrier, one of which is in based at the octahedral site, and

the other at the tetrahedral site. Although this is a quantum tunnelling process, it is

nevertheless an activated process since the states involved are not the ground state for

the system.
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Diffusion is found to become non-Arrhenius at lower temperatures. Other quantum pro-

cesses are now found to contribute, tunnelling between ground states and excited states

in neighbouring octahedral sites and similar processes between states in neighbouring

tetrahedral sites. More experimental work needs to be done to investigate the diffusion

of hydrogen in β-PdH at low temperatures and discover this non-Arrhenius behaviour.

The relative diffusion rates of the different isotopes depend both on the number of tun-

nelling processes which contribute and on the amount of diffusion which arises from the

processes. In general the heavier isotopes, 2D and 3T have a higher density of states at

low energies, so the probability of finding the degenerate or near-degenerate states which

contribute to diffusion is higher. However the states of the heavier isotopes tend to be

more tightly bound than 1H states, and there is less tunnelling between them.

In palladium hydride these effects lead to an inverse isotope effect in the activation energies

to diffusion, since considerably more below the barrier tunnelling occurs with 2D and 3T

than with 1H.

Although the methods used in this study reproduced experimental vibrational energies

and activation energies of diffusion, the absolute values of the diffusion coefficients were

underestimated and deuterium was not found to have a higher diffusion coefficient than

hydrogen above room temperature.

It is likely that coupling between hydrogen states and phonon states in the palladium

lattice, which is neglected in these calculations, has a large effect on diffusion rates.

Further study is needed to investigate the rôle which phonon coupling has in hydrogen

diffusion.



Chapter 4

Other Materials

A similar method to that used to study the hydrogen eigenstates and diffusion coefficients

in palladium hydride was used to study niobium hydride and lithium imide. This work

was carried out in collaboration with Dr Changjun Zhang[57][58].

4.1 Niobium Hydride

Niobium hydride has a complicated phase diagram depending on temperature and hydro-

gen concentration. Stoichiometric NbH has been shown to be in the ordered β-phase at

most temperatures[59][60]. The β-phase has a face centred orthorhombic lattice[61], in

which the niobium atoms form a slightly distorted body centred cubic (BCC) lattice and

the hydrogen atoms reside in the tetrahedral interstitial sites. Since the distortions away

from this ideal structure are very small (≈ 0.01Å in the lattice constant) calculations were

made using a simple BCC lattice for the niobium atoms. This structure of β-NbH can be

seen in figure 4.1.

The plane-wave based DFT code, CASTEP, was used to perform electronic structure

calculations on the NbH system. The core electrons of the niobium atoms were replaced

by an ultrasoft pseudopotential and the PBE functional was used to calculate energies. A

plane-wave cutoff of 400 eV was sufficient for convergence and calculations were performed

over a 123 k-point grid.

The niobium atoms were placed in a BCC cell and the hydrogen atoms at tetrahedral

interstitial sites. The lattice constant was then varied to find the equilibrium value. The

49
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lattice constant was calculated as 3.47 Å, in excellent agreement with experimentally

determined values of 3.45–3.48 Å[61].

Figure 4.1: An idealised unit cell of the β-NbH system showing the hydrogen atoms in
tetrahedral sites
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4.1.1 Hydrogen Energy Levels

The vibrational energy spectra of hydrogen and its isotopes in niobium have been stud-

ied by inelastic neutron scattering (INS)[62][63][64][65]. These investigations have been

carried out on different phases of NbHx and at different concentrations of hydrogen.

The vibrational energy levels of γ-NbH, were calculated by Tao et al[66] using a similar

method to that used by Elsässer et al[45] when calculating energy levels in β-PdH. The

structure of γ-NbH is similar to that of β-NbH, with the hydrogen atoms occupying a

different combination of tetrahedral sites. A potential was calculated for the hydrogen

atom in a niobium lattice by calculating the energy of the system with the hydrogen at

35 positions in the unit cell. The energy calculations were carried out using DFT with

an LDA functional, norm-conserving pseudopotentials and a mixed basis of plane-waves

and local functions. The points were fitted to a Fourier series which was used to calculate

hydrogen energy levels by expanding the hydrogen wave functions in a plane-wave basis.

Elsässer et al showed that these results are close to those calculated using a simple local

polynomial potential in the harmonic approximation[45], suggesting that the anharmonic-

ity in NbH is weak.

The energies and wave functions of hydrogen and its isotopes in a BCC lattice of niobium

atoms were calculated using the same method described in section 3.2. A potential was

calculated on a 323 cubic grid in real space, by carrying out single point electronic structure

calculations with the hydrogen atom at different locations within the BCC unit cell. The

lattice constant was set to the calculated equilibrium value of 3.47 Å.

The single point calculations were carried out using the plane-wave based DFT code,

CASTEP, as described in the previous section. A contour plot of the potential in the 100

plane of the lattice can be seen in figure 4.2. The tetrahedral sites were found to be at

minima in the potential, but unlike in the PdH system, the octahedral sites were found

to be at maxima.

Once the potential was obtained in real space it was transformed into Fourier space and

hydrogen wave functions and energies found by solving a set of Bloch equations. The wave

functions and energies were calculated at the Γ-point (k=0). The number of plane-waves

was increased until the calculations had converged. In order to reach convergence the

potential was interpolated onto 483, 643 and 723 grids for 1H, 2D and 3T respectively.

This corresponded to imposing spherical cutoffs of 0.98 eV, 0.87 eV and 0.73 eV to the
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plane-wave kinetic energies.

The results of these calculations are shown in table 4.1 alongside those obtained experi-

mentally and those calculated by Tao et al[66]. In some cases the calculation produced

a spread of energies due to mixing between the 12 tetrahedral sites in the cubic BCC

unit cell. As in section 3.2 the states have been labelled according to the scheme used by

Elsässer et al.

The calculated results are close to those observed in experiments and to those calculated

by Tao et al. However, they underestimate experimental excitation energies by roughly

10%. The difference in energy between the |100〉 and |010〉 states, and the |001〉 states is

due to the tetragonal symmetry at the tetrahedral sites.

Table 4.1: Zero-point energies and excitation energies for 1H, 2D and 3T in meV. Exper-
imental data was taken from references [62], [63], and [64].

1H 2D 3T
E0,|000〉
Calculated 223 158 128
Tao et al[66] 237 169 139
e1,|001〉
Calculated 109–112 81 67
Tao et al[66] 113 84 70
Expt. 114–122 81–89 72
e1,|010〉 = e1,|100〉
Calculated 147–152 109 90
Tao et al[66] 161 118 98
Expt. 160–167 111–125 101
e2,|002〉
Calculated 193–217 155–157 131
Tao et al[66] 218 161 136
Expt. 227–233 166–170
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Figure 4.2: A contour plot of the potential in the 100 plane of the NbH lattice. The
positions of the tetrahedral (T) and octahedral (O) sites are labelled. The tetrahedral
sites are at minima in the potential, and the octahedral site at a maximum. In-plane
niobium atoms are located at the corners of the plot, the out-of-plane niobium atoms are
located behind the octahedral site. Contours are placed at intervals of 140 meV.
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4.1.2 Hydrogen Diffusion

Experimental Results

The diffusion of hydrogen and its isotopes in niobium has been the subject of many ex-

perimental studies using a variety of experimental techniques. A comprehensive summary

of early results was published by Völkl and Alefeld in 1978[46].

Most studies were made in niobium hydride samples with low hydrogen concentrations

(NbH<0.4). In these systems, hydrogen is found to have two regions of different Arrhenius

behaviour. Above 273 K the temperature dependence of the diffusion coefficient can be

fitted to an Arrhenius expression (D (T ) = D0e
− Ea

kBT ) with D0 = 5.0 × 10−4 cm2s−1 and

Ea = 106 meV. Below room temperature the activation energy becomes 68 meV and the

pre-exponential, D0, 0.90 × 10−4 cm2s−1. This behaviour has been observed to continue

to temperatures as low as 34 K[67].

The diffusion of the other isotopes, 2D and 3T, follows the expected isotope behaviour

at low concentrations. Tritium has the lowest diffusion coefficient and highest activation

energy (D0 = 4.5 × 10−4 cm2s−1 and Ea = 135 meV) and the diffusion coefficient of

deuterium lies between that of hydrogen and tritium (D0 = 5.2× 10−4 cm2s−1 and Ea =

127 meV). Although diffusion with a different activation energy at low temperatures has

not been seen for the heavier isotopes, Engelhard’s results[67] suggest that deviation from

Arrhenius behaviour is present for deuterium at 50 K.

Fewer studies have been made into the diffusion of hydrogen in niobium at higher con-

centrations. Results published by Völkl and Alefeld[46] suggest that the rate of diffusion

is over an order of magnitude slower in β-NbH0.9. A rough fit of the diffusion coefficients

shown in [46] gives D0 ≈ 5× 10−4 cm2s−1 and Ea ≈ 240 meV over the temperature range

300–400 K. No data is shown at lower temperatures or for 2D and 3T diffusion at this

concentration.

Kubo Formula

The wave functions and energies calculated for β-NbH in section 4.1.1 were used in equa-

tion 1.39 to calculate the diffusion coefficients of 1H, 2D and 3T in niobium with a molar

ratio of 1:1.
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The computational details were similar to those used for PdH in section 3.3.3. The width

of the Gaussian function replacing the δ-function was 10 meV. A summary of the other

parameters required for convergence is given in table 4.2.

Table 4.2: Converged parameters for diffusion coefficient calculations.

1H 2D 3T

Size of grid used for wave function 483 643 723

Corresponding plane-wave cutoff [eV] 0.98 0.87 0.73
Number of states included in sum 800 800 1500

The diffusion coefficients are plotted over the full range of temperatures at which they were

calculated in figure 4.3. The same data is plotted in figure 4.4 over a smaller temperature

range of 200–1000 K.
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Figure 4.3: The diffusion coefficients of 1H, 2D and 3T over a temperature range of 25 K
– 1000 K
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The temperature dependence of the diffusion coefficients of all three isotopes follow a

roughly Arrhenius behaviour above room temperature. The results of Arrhenius fits of

the diffusion coefficients between 300 K and 600 K are shown in table 4.3.

Table 4.3: Parameters of an Arrhenius fit of diffusion coefficients. between 300 K and 500
K

1H 2D 3T

D0 [10−4 cm2s−1] 2.5 3.4 1.4
Ea [meV] 173 203 177

The Arrhenius fits of the calculated diffusion coefficients give higher activation energies

than those found in experiments on the low concentration α-phase, but lower than the

activation energy obtained for hydrogen diffusion in the β-phase. The rate of diffusion is

certainly reduced as the concentration of hydrogen is increased.

Hydrogen is the fastest diffusing isotope at all temperatures, but tritium and deuterium

are calculated to have very similar diffusion rates, deuterium diffusing faster at some

temperatures and tritium at others. At very low temperatures the diffusion coefficient of

deuterium is larger.

Below room temperature the diffusion coefficients are seen to deviate away from Arrhenius

behaviour. Figure 4.3 shows that as the temperature is decreased the diffusion coefficients

reach a plateau value. Hydrogen reaches this plateau first, then deuterium and finally

tritium.

The temperature dependence of the diffusion coefficients can be analysed by plotting the

contributions to diffusion arising from different sections of the energy spectrum. These

plots are shown in figures 4.5 and 4.6.

Unlike in palladium, the hydrogen states in niobium lie in only one type of well. The

pairs of states which contribute to diffusion at low energies are all pairs in which both

states are in the tetrahedral sites.

At very low temperatures diffusion arises solely through tunnelling between ground states

in different wells. There is no energy barrier to this process, and the plateau in the

diffusion coefficients occurs when ground state tunnelling becomes the dominant process.

At higher temperatures the excited states become populated and tunnelling between ex-

cited states becomes important. As the excited states lie at lower energies for the heavier
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isotopes these processes become important at lower temperatures for tritium and deu-

terium than they do for hydrogen. In the region that these processes dominate, diffusion

occurs as an activated process, but the activation energy is lower than that predicted

classically. The barrier in the potential between two tetrahedral sites, calculated using

DFT, is roughly 230 meV.

Above 300 K processes involving transitions between states above the classical barrier

become important and dominate at high temperatures. There is, however, still some

contribution from tunnelling between lower lying excited states.

The diffusion of hydrogen and its isotopes in β-NbH seems to proceed by hops between

neighbouring tetrahedral sites. These hops either occur by tunnelling at energies lower

than the classical energy barrier or by transitions above this barrier.
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Figure 4.5: The contributions to the diffusion coefficient from different regions of the
eigenspectrum below 500 meV above the ground state for (a) 1H and (b) 2D
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Figure 4.6: The contributions to the diffusion coefficient from different regions of the
eigenspectrum below 500 meV above the ground state for 3T
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4.1.3 Conclusions

In contrast to the results for the face centred cubic (FCC) palladium hydride, hydrogen

atoms in the body centred cubic (BCC) niobium hydride lattice only occupy one type of

site. Quantum calculations have confirmed experimental predictions that the hydrogen

atoms reside at the tetrahedral interstitial sites in the BCC niobium lattice. The excitation

energies from this site show good agreement with those obtained by experiment and

analysis of the corresponding excited state wave functions can be carried out to look at

the properties of the excited states.

Diffusion of hydrogen and its isotopes in β-NbH(DT) occurs due to transitions between

states in neighbouring tetrahedral sites. These transitions occur between states which are

above and below the classical barrier to diffusion. Tunnelling between the ground states

in neighbouring wells has a relatively higher contribution in niobium hydride than it does

in palladium hydride, with some contribution from this process still important at 300 K

for 1H.

The relative diffusion rates of the different isotopes occur in the order predicted classically

(1H>2D>3T) over most temperature regions, although 3T is predicted to diffuse at a faster

rate than 2D below roughly 350 K.

There has been little experimental research into the diffusion of different isotopes of

hydrogen in the stoichiometric β-phase niobium hydride. The results of this study suggests

that the diffusion coefficients measured in the β-phase will be considerably lower than

those measured in the α-phase and show large deviations away from Arrhenius behaviour

below room temperature.
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4.2 Lithium Imide

It has been suggested that lithium imide (Li2NH) is a potential hydrogen storage material[68].

Safe storage materials for hydrogen are necessary for the manufacture of practical hydrogen-

based energy sources. Li2NH was shown to be able to absorb 6.5 wt% of hydrogen by the

reaction Li2NH + H2 ↔ LiNH2 + LiH.

4.2.1 The Location of the Hydrogen Atoms

In order to control and improve the performance of hydrogen storage materials it is

important to understand the fundamental properties of the storage material, such as

its crystal structure and the location of the hydrogen atoms within it.

Early experimental evidence suggested a crystal structure in which the nitrogen atoms

formed a face centred cubic (FCC) lattice with the lithium atoms at the tetrahedral

interstitial sites and the hydrogen atoms at the octahedral interstitial sites[69]. A diagram

of this structure can be seen in figure 4.7(a).

Although the position of the nitrogen atoms and lithium ions has not been disputed, the

position of the hydrogen atoms has been questioned. Ohoyama et al argued that the

nitrogen-hydrogen distance in the structure proposed by Juza and Opp was too large[70].

Following an investigation using neutron powder diffraction, two alternative structures

were proposed. In both structures the hydrogen atoms could occupy one of several sites

around the nitrogen atoms. The possible sites of the hydrogen atoms could be arranged

in a tetrahedron, as in figure 4.7(b), or a truncated octahedron, as in figure 4.7(c). The

structure in which one of the twelve sites per nitrogen atom shown in figure 4.7(c) is

occupied, was also found to be the most likely by Noritake et al, who used precise X-ray

diffraction to find the structure[71].

The wave functions and energies of hydrogen in Li2NH were calculated using the same

method as that used to find the hydrogen wave functions in palladium hydride and niobium

hydride (sections 3.2 and 4.1.1).

The potential was calculated on a 323 real space grid using CASTEP to perform DFT

calculations with the PBE functional. Ultrasoft pseudopotentials were used to model the

ionic cores. The plane-wave cutoff was set to 330 eV and calculations performed on a 123

k-point grid.
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(a) (b) (c)

Figure 4.7: Crystal structures of Li2NH proposed by (a) Juza and Opp [69] and (b),(c)
Ohoyama et al [70] Nitrogen atoms are green, lithium blue and hydrogen white.

Once the potential was calculated it was interpolated onto an 883 grid and used to calculate

the hydrogen wave functions and energies by solving a set of Bloch equations in a plane-

wave basis. The plane-wave cutoff used for calculating the hydrogen wave functions was

1.1 eV.

By performing this calculation over a range of lattice parameters the lattice parameter

with the lowest energy ground state was calculated to be 5.007 Å, in good agreement with

the values of 5.047 Å[69], 5.0769 Å[70], and 5.0742 Å[71] found by experiment.

The hydrogen occupation in the ground state wave function did not match either of the

possible structures described by Ohoyama et al and shown in figure 4.7. No low lying

states were found with structures similar to those in figure 4.7.

Instead, the hydrogen atoms were found to have an equal probability of occupying six

sites at the vertices of an octahedron centred at each nitrogen atom. The centres of these

sites were separated from the nitrogen atoms by ≈ 1 Å. A schematic diagram and real

space plot of the ground state wave function can be seen in figure 4.8. The ground state

wave functions were found at ≈ 275 meV above the potential minimum.

In support of these findings, DFT calculations were performed in which the position of the

hydrogen atoms in the unit cell was optimised with the hydrogen atoms initially placed

in the sites suggested by Ohoyama et al. In both cases the hydrogen was found to have

moved to the octahedral-type sites at the end of the optimisation.

Interestingly, the structure with hydrogen atoms at vertices of an octahedron was consid-

ered by Noritake et al and dismissed due to a slightly worse fit to the diffraction data than
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the model shown in figure 4.7(c). Further experimental evidence is required to determine

the correct location of the hydrogen atoms.

Rather than the classical picture of the sites being randomly filled with a probability

of 1/6, in the quantum mechanical picture all six sites surrounding a nitrogen atom are

partially occupied.

Since there are six sites around each of four distinct nitrogen atoms in the unit cell, there

are 24 different linear combinations of the localised vibrational states in the ground state

manifold. The bandwidth, J , of this manifold is significant, ≈ 4 meV, which suggests a

tunnelling rate of τ ≈ J/h̄ ≈ 6 ps−1. Localised orbitals cannot be formed by combining

different states in the manifold due to the significant gap in energy between the states.

The quantum tunnelling rate is several orders of magnitude larger than the classical

kinetic rate constant predicted for transitions between the sites. The potential calculated

using DFT gives a barrier of 477 meV between different sites around the same nitrogen.

Estimating the zero point energies at the stable site and the transition state using a

harmonic approximation, the expression for the rate constant from transition state theory

(equation 1.12) gives an estimated classical rate constant of ≈ 6.0× 10−8 ps−1 at 300 K.

This is much slower than the predicted quantum tunnelling rate, suggesting that quantum

effects must be taken into account when considering the location of the hydrogen atoms

in the Li2NH lattice.

(a) (b)

Figure 4.8: (a) The ground state wave function. The nitrogen atom positions are shown
in green, the lithium ions in blue. (b) Possible hydrogen sites predicted by calculating
the ground state hydrogen wave function of the system, coloured as in figure 4.7.
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4.2.2 Diffusion

For Li2NH to be a practical hydrogen storage material it must be possible to absorb and

desorb hydrogen from it at reasonable rates.

If the diffusion of hydrogen atoms in Li2NH is considered classically, the barrier to hy-

drogen transport between different nitrogen atoms is very large. The potential used to

calculate the wave functions previous section gives a barrier of 477 meV between different

sites on the same nitrogen atom, and a barrier of 2.9 eV between sites on different nitrogen

atoms.

The wave functions and energies calculated in the previous section can be used in equation

1.39 to calculate diffusion coefficients in the same way as for palladium hydride and

niobium hydride. After performing this calculation, the temperature dependence of the

diffusion coefficient of hydrogen from 300 K to 800 K could be fitted to an Arrhenius

expression with an activation energy of just 260 meV. This is much lower than the classical

barrier to diffusion, suggesting that quantum effects are very large in hydrogen diffusion

in Li2NH.

4.2.3 Conclusions

The location of the hydrogen atoms in Li2NH is not well described by the classical de-

scription of randomly occupied sites around the nitrogen atoms. What is more, the sites

predicted by diffraction experiments do not match the location of hydrogen calculated

using quantum mechanics.

Quantum calculations find that the ground state hydrogen wave function in Li2NH has

partially occupied sites centred in an octahedral arrangement around each nitrogen atom.

The quantum tunnelling rate between the sites around a given nitrogen atom is much

faster than that predicted classically. The classical barrier to diffusion between sites

around different nitrogen sites is very high (≈ 2.9 eV) suggesting that quantum effects

are very large in hydrogen diffusion in Li2NH.



Chapter 5

Transport in One Dimension

5.1 A model potential

A periodic potential in one dimension was chosen for preliminary studies of hydrogen

diffusion.

V (x) = −1

2
(Etet − Eoct) cos

(
2πx

L

)
+

1

2
(Etet + Eoct) cos

(
4πx

L

)
(5.1)

The potential is periodic in L, the length of the box, and has two wells which can be

chosen to have different depths, Eoct and Etet, roughly modelling the potential along the

pathway between octahedral and tetrahedral sites in a face centred cubic (FCC) lattice.

Eoct is in general taken to be lower in energy than Etet. The two wells can be chosen to

have the same depth, modelling the potential between two equivalent sites in a lattice.

The single-particle wave functions and energies can be found by solving the usual time-

independent single particle Schrödinger equation.

Ĥψn = εnψn (5.2)

As the potential is periodic, this is most sensibly done by solving the Bloch equations

(2.33) in a plane-wave basis.

67



CHAPTER 5. TRANSPORT IN ONE DIMENSION 68

The Fourier components of V (x), Ṽ (g) are given by the following expression.

Ṽ (g) =


−1

4
(Etet − Eoct) g = ±1

1
4
(Etet + Eoct) g = ±2

0 otherwise

 (5.3)

The Fourier components of the Bloch functions at a given point in k-space, ũk,n(g) are the

eigenfunctions of a Hermitian matrix with elements given by equation 2.34, the eigenvalues

giving the energies of the states.

Once the wave functions and energies have been obtained, the integral over the momentum

operator can be calculated.

〈
ψk

m|p̂|ψk
n

〉
=
∑

g

ũ∗k,n(g) (g + k) ũk,m(g) (5.4)

For ease of notation the integral
〈
ψk

m|p̂|ψk
n

〉
will be represented by P k

nm.

The momentum integrals and the single-particle energies can then be used in equation 1.39

(reproduced here for convenience) to calculate the diffusion coefficient of the particle in

this potential at a given temperature. It is necessary to perform an integral over sufficient

k-points to give convergence in the diffusion coefficient.

D =

∫
dk

π

NQm2
H

∑
n,m6=n

e−βεn|P k
nm|2 δ

(εn

h̄
− εm

h̄

)
(5.5)

5.2 Computational Details

The required theory was programmed in FORTRAN, the diagonalisation of the Bloch

matrix carried out using a QR algorithm provided by the LAPACK libraries.

The diffusion coefficient at different temperatures was calculated for the three hydrogen

isotopes 1H, 2D, and 3T in different potentials. For each calculation the measured diffusion

coefficients were converged with respect to the number of plane-waves used as a basis set

(limited by a kinetic energy cutoff) and the number of k-points over which the diffusion

coefficient was integrated. The width of the Gaussian which replaced the δ-function in

equation 5.5 was chosen such that the diffusion coefficient only varied slowly with the

width.
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5.3 Results and Discussion

5.3.1 An Asymmetric Double Well Potential

The results in this section were obtained using a plane-wave cutoff of 0.1 EH, (2.7 eV),

213 k-points, and a Gaussian of width 0.1 meV.

Calculations were carried out using a potential which repeated every 6.8 a0 (3.6 Å) The

shallow well minimum (Etet) was kept at -0.002 EH and the deeper well minimum (Eoct)

varied between -0.0065 EH and -0.01 EH (figure 5.1). The dependence of the diffusion

coefficients at 100 K, 400 K and 1000 K with the depth of the well can be seen in figure

5.2.
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−0.004

−0.002

 0
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 0.004

 0.006

 0.008

 0  2  4  6  8  10  12

V
(x

) 
[E

H
]

x [a0]

Etet

Eoct

Figure 5.1: The potential curve used at the two extremes of the calculation.

The diffusion of hydrogen isotopes in this potential shows peaks as the minimum of the

deeper well is varied (see figure 5.2). These peaks occur at -0.0081 EH for 1H, -0.0087

EH for 2D, and -0.007 EH and -0.0096 EH for 3T. The isotope effect is not constant over

the region. Each of the hydrogen isotopes diffuses more quickly in different regions of the

curve.



CHAPTER 5. TRANSPORT IN ONE DIMENSION 70

-32

-30

-28

-26

-24

-22

-20

-18

-16

-0.01-0.0095-0.009-0.0085-0.008-0.0075-0.007-0.0065

lo
g 1

0(
D

) 
[c

m
2 s-1

]

Eoct [EH]

100K

H
D
T

-10

-9.5

-9

-8.5

-8

-7.5

-7

-6.5

-6

-0.01-0.0095-0.009-0.0085-0.008-0.0075-0.007-0.0065

lo
g 1

0(
D

) 
[c

m
2 s-1

]

Eoct [EH]

400K

H
D
T

-5.3
-5.2
-5.1

-5
-4.9
-4.8
-4.7
-4.6
-4.5
-4.4
-4.3

-0.01-0.0095-0.009-0.0085-0.008-0.0075-0.007-0.0065

lo
g 1

0(
D

) 
[c

m
2 s-1

]

Eoct [EH]

1000K

H
D
T

Figure 5.2: The diffusion coefficients of 1H, 2D and 3T at different temperatures.
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If the eigenstates at the 1H at -0.0081 EH (figure 5.3(a)) and those at -0.0075 EH (figure

5.3(b)) are compared it can be seen that the bound states in the two wells (those below

the classical inter-well barrier with little dispersion) become near degenerate when Eoct is

-0.0081 EH, whereas at -0.0075 EH the states in different wells are well separated.

The near degenerate bound states with Eoct = -0.0081 EH allow contributions to the dif-

fusion coefficient at much lower energies than with Eoct = -0.0075 EH where contributions

only occur at the band edges of the continuum states above the classical barrier. As a

result, diffusion in the potential with Eoct = -0.0081 EH is faster than that with Eoct =

-0.0075 EH at all temperatures (figure 5.4). The classical barriers are shown in table 5.1.

The peaks in diffusion in figure 5.2 are caused when the eigenstates in the deep well and

the eigenstates in the shallow well become close in energy.

The δ-function in equation 5.5 ensures that contributions to the diffusion coefficient only

arise from matrix elements between degenerate or near degenerate states. Such pairs

of states then contribute to the diffusion coefficient according to the magnitude of the

momentum matrix element between them, Pnm, and a Boltzmann factor, e−βεn .

The contributions to the diffusion coefficient arising from different regions of the eigenspec-

trum are plotted for different temperatures in figure 5.5 for the two potentials discussed

above.

The relative rates of diffusion of the different isotopes of hydrogen in the same potential

vary for similar reasons. The temperature dependence of the diffusion coefficents for 2D

and 3T in a potential with Eoct = -0.0081 EH are shown in figure 5.6, and the separate

contributions to diffusion from parts of the eigenspectrum are shown in figure 5.7.

The contribution from states beneath the classical barrier with 1H leads to much faster dif-

fusion, especially at lower temperatures than with the heavier isotopes. The contributions

to the diffusion of 2D and 3T only comes from states above the classical barrier.

Although tunnelling between states beneath the classical barrier has been shown to be

important, the diffusion of hydrogen isotopes in this potential remains an activated process

since in the cases in which bound states become close enough in energy to contribute,

the states involved are excited states. As a result the temperature dependence of the

diffusion coefficient remains largely Arrhenius, although at low temperatures the effective

activation energy is seen to decrease as higher energy excited states are no longer thermally

accessible.
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Figure 5.3: The proton densities and band structure of 1H of the first 11 states with (a)
Eoct = -0.0081 EH, (b) Eoct = -0.0075 EH. The potential energy curve is shown in blue.
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Figure 5.5: The contributions to the diffusion coefficient from different regions of the
eigenspectrum below 500 meV above the ground state for 1H (a) Eoct = -0.0081 EH, (b)
Eoct = -0.0075 EH.
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Figure 5.7: The contributions to the diffusion coefficient from different regions of the
eigenspectrum below 500 meV above the ground state for (a) 2D and (b) 3T with Eoct =
-0.0081 EH.
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5.3.2 Transition State Theory and Arrhenius Expressions

A comparison can be made between the diffusion coefficients calculated using equation 5.5

and those calculated using the following simple transition state theory (TST) expression

discussed in section 1.1.2.

DTST =
l2kBT

h
e
−ETS−EGS

kBT (5.6)

where ETS is the energy at the top of the barrier between the two wells and EGS is the

energy of the lowest eigenstate, and l is the distance between two neighbouring wells.

Table 5.1 and figures 5.4 and 5.6 show the results of these calculations. The values in

table 5.1 are the results of a fit to an Arrhenius expression of the form

DArr = D0e
− Ea

kBT (5.7)

Where D0 is the diffusion coefficient in the finite temperature limit and Ea is an effective

activation energy. The diffusion curves shown in figures 5.4 and 5.6 follow Arrhenius

behaviour except at low temperatures (<200 K). The values of D0 and Ea were calculated

by fitting 13 points between 300 K and 600 K to an Arrhenius expression.

Table 5.1: A comparison of the parameters resulting from fitting the diffusion coefficients
calculated using equation 5.5 and TST to an Arrhenius expression. D0 in 10−3 cm2s−1,
activation energies in meV.

Isotope Eoct Equation 5.5 TST ETS − Eoct ETS − EGS

[EH] D0 Ea D0 Ea
1H -0.0075 5.74 438 31.4 333 339 297
1H -0.0081 2.60 348 31.5 357 364 321
2D -0.0081 2.07 410 31.5 369 364 333
3T -0.0081 2.13 409 31.5 374 364 339

The diffusion coefficients calculated using TST do not agree with those calculated using

equation 5.5. In general, the pre-exponential, D0, is an order of magnitude too large, and

the barrier to diffusion, Ea, too small. On the occasions in which diffusion is large because

of bound state degeneracies the TST expression does not show any enhanced diffusion.

The dependence of diffusion on the mass of the isotope and the potential in TST comes

solely from the ETS−EGS term in equation 5.6. As a result, the TST diffusion coefficients

have a simple dependence on both the isotope and Eoct. A normal isotope effect is always

obtained when using TST, since 1H has the highest ground state and therefore the lowest

barrier of the isotopes. Similarly, a more negative value of Eoct gives a higher barrier and
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hence a lower diffusion with TST. Hence TST cannot reproduce the peaks in diffusion at

certain values of Eoct found using equation 5.5 and gives a different ordering of diffusion

for the different isotopes.

TST only considers the ground state energy and the height of the barrier for diffusion,

whereas it would appear necessary to consider both the energies of excited states and

the momentum matrix elements or transition probabilities between states to give a more

accurate representation of quantum diffusion in these systems.

A Quantum Correction to Transition State Theory

A large amount of work has been carried out attempting to derive expressions for rate

constants in transition state theory which include quantum effects. A review of many of

these attempts is given by Benderskii et al[6], including work by Garrett and Truhlar[72]

and Miller[73].

A simple correction can be made to the classical transition state expression used in the

previous section by including a scaling factor derived by Wigner[74]. Wigner’s correction

includes the effect of quantum tunnelling through a reaction barrier, assuming that it is

parabolic. The corrected diffusion coefficient becomes

DQTST = kWDTST (5.8)

Where kW is Wigner’s correction given by

kW = 1 +

(
h̄
∣∣ω‡∣∣)2

24 (kBT )2 (5.9)

ω‡ is the imaginary frequency of the barrier found by calculating the second derivative

of the potential at the transition state, k‡, and using the usual harmonic expression,

ω‡ =
√
|k‡| /m where m is the mass of the diffusing particle.

The potential used in these calculations is a sum of cosine curves, and as such is well

modelled by a parabola close to the barrier to diffusion. The second derivative at the top

of the barrier is given by

k‡ =
8π2

L2
(Etet + Eoct)−

π2

2L2

(Etet − Eoct)
2

(Etet + Eoct)
(5.10)
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This expression was used to calculate the imaginary frequency and hence the diffusion

coefficients with quantum corrections for 1H, 2D and 3T in the potential with Eoct =

-0.0081EH and Etet = -0.002EH . The quantum correction caused a shift away from

Arrhenius behaviour with a small increase in the estimated diffusion coefficients at low

temperatures. The diffusion curves calculated for 1H with and without the correction are

shown in figure 5.8. The curves for 2D and 3T show similar behaviour and are left out of

the figure for the sake of clarity.

The quantum correction to the transition state theory expression causes a decrease in

the effective activation energy, and an increase in the calculated diffusion coefficients. As

such it does not improve the agreement between transition state theory calculations and

those carried out with the Kubo theory expression, equation 5.5.
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Figure 5.8: The diffusion coefficients of 1H calculated using transition state theory plotted
against inverse temperature with Eoct = -0.0081 EH.
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5.4 Conclusions

A one-dimensional potential was used to model the process of hydrogen diffusion in a

potential with two different types of well, such as that of palladium hydride.

In this system diffusion only occurs due to transitions involving states above the classical

barrier to diffusion, unless there are degenerate or near degenerate bound states in the

two wells. As a result the rate of diffusion is very dependent on the potential. If the

potential is altered so that two levels in different wells become coincident then diffusion

is greatly enhanced.

This suggests that coupling the potential to an oscillator which could vary the relative

depths of the two wells could have a large effect on the diffusion of hydrogen through the

system as different levels were made coincident by the oscillator.

The isotope dependence of the diffusion coefficients also varies considerably with the

shape of the potential, as the states of different isotopes are brought into coincidence

with different potentials.

The strong dependence of diffusion on the shape of this model potential highlights the

importance of building an accurate potential in studies of real systems such as those of

palladium hydride, niobium hydride and lithium imide discussed in the previous chapters.

Even in this simple system in which most of the contributions to diffusion occur through

processes at energies above the classical barrier to diffusion, transition state theory does

not accurately reproduce the diffusion coefficients calculated using equation 1.39. It is

unlikely that it will be any better at describing diffusion in generally more complicated

real systems.



Chapter 6

Coupling to a Harmonic Oscillator

6.1 The Born-Huang Equations

The total Hamiltonian for a system which is periodic in the coordinates x and harmonic

in the coordinate q is given by

Ĥ = − 1

2Mi

∇2
x −

1

2MI

∇2
q +

1

2
kq (q − q0)

2 + V (x, q − q0) (6.1)

working in atomic units. Mi is the mass of the particle with coordinates x and MI is the

mass associated with the harmonic oscillator such that the harmonic frequency, ω =
√

kq

MI
.

q0 is the equilibrium position of the oscillator.

It is often sufficient to treat the q dependence of the potential V using a Taylor expansion

to first order in q such that

V (x, q − q0) = V (x, q0) +
∂

∂q
V (x, q)

∣∣∣∣
q=q0

(q − q0) +O
(
(q − q0)

2) (6.2)

From this point onwards the expression ∂
∂q
V (x, q)

∣∣∣
q=q0

will be written V ′
0(x). Making the

Taylor expansion, and setting q0 = 0 for convenience, the terms in the Hamiltonian which

depend on q can be gathered to give:

Ĥq = − 1

2MI

∇2
q +

1

2
kqq

2 + V ′
0(x)q (6.3)

Ignoring the x dependence of the V ′
0(x) term for the time being, this Hamiltonian is that

82
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of a simple forced Harmonic oscillator.

Ĥq = − 1

2MI

∇2
q +

1

2
kq

(
q +

1

kq

V ′
0(x)

)2

− 1

2kq

|V ′
0(x)|2 (6.4)

The time-independent Schrödinger equation Ĥqφν = ενφν then has solutions similar to

a simple harmonic oscillator in q, but in which the wave functions and eigenvalues are

shifted by x dependent terms.

φν (q;x) = Nνe
−Q(x)2

2 Hν (Q(x)) (6.5)

εν(x) =

(
ν +

1

2

)
ω − 1

2kq

|V ′
0(x)|2 (6.6)

Where Q(x) is a scaled harmonic oscillator coordinate given by

Q(x) =
βq√
2

(
q +

1

kq

V ′
0(x)

)
(6.7)

βq is a constant given by

βq =
√

2ωMI (6.8)

Nν is the usual normalisation constant

Nν =

√
βq

2ν
√

2πν!
(6.9)

and Hν is the νth order Hermite polynomial.

The orbitals φν can be used as part of a basis set which is used to solve for the Hamiltonian

of the whole system. The one-particle orbitals of the coupled system at a given point in

k-space ΨN,k are expressed as sums of φν with an x dependent coefficient, ψN,k
ν .

ΨN,k (x, q) =
∑

ν

ψN,k
ν (x)φν (q;x) (6.10)

Inserting this expression into the time-independent Schrödinger equation for the coupled

system the following expression is obtained(
− 1

2Mi
∇2

x + V (x, 0)− 1
2MI

∇2
q +

1
2
kqq

2 + V ′
0(x)q − EN

)∑
ν

ψN,k
ν (x)φν (q;x) = 0 (6.11)
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where EN is the total energy of the coupled system.

The functions φν (q;x) are solutions to the Schrödinger equation, Ĥqφν (q;x) = εν(x)φν (q;x).

As a result the previous expression can be simplified to(
− 1

2Mi

∇2
x + V (x, 0) + εν(x)− EN

)∑
ν

ψN,k
ν (x)φν (q;x) = 0 (6.12)

Multiplying by φν′ (q;x) and integrating over q the orthonormality of the functions φν′

can be used to obtain the following expression

− 1
2Mi

∑
ν

∫ ∞

−∞
φν′ (q;x)∇2

xφν (q;x)ψN,k
ν (x)dq + (V (x, 0) + εν(x)− EN )ψN,k

ν′ (x) = 0 (6.13)

Both φν and ψN,k
ν depend on x, so the x derivatives in the above expression have to be

carried out carefully. Using the usual product rule the following is obtained

− 1

2Mi

∑
ν

∫ ∞

−∞
φν′
(
φν∇2

xψ
N,k
ν + 2∇xφν .∇xψ

N,k
ν + ψN,k

ν ∇2
xφν

)
dq

+ (V (x, 0) + εν(x)− EN)ψN,k
ν′ = 0 (6.14)

Which can be simplified to give

− 1

MI

∑
ν

∫ ∞

−∞
φν′∇xφν .∇xψ

N,k
ν dq − 1

2MI

∑
ν

ψN,k
ν

∫ ∞

−∞
φν′∇2

xφνdq

+

(
− 1

2Mi

∇2
x + V (x, 0) + εν(x)− EN

)
ψN,k

ν′ = 0 (6.15)

These equations for the x dependent orbitals ψN,k
ν and the energies EN are coupled-

channel or Born-Huang equations[75]. The remaining integrals over q can be carried out

by using the chain rule and finding the Q derivatives of the functions φν .

∇xφν (q;x) = ∇xQ(x)
∂

∂Q
φν (q;x) (6.16)

To find the Q derivative of φν it is necessary to use two properties of the Hermite poly-

nomials. The derivative of a Hermite polynomial is given by d
dQ
Hν (Q) = 2νHν−1 (Q).
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Another useful relation is that QHν (Q) = 1
2
(2νHν−1 (Q) +Hν+1 (Q)).

∂

∂Q
φν (q;x) = Nν

(
−Qe−

Q2

2 Hν (Q) + 2νe−
Q2

2 Hν−1 (Q)

)
(6.17)

=

√
ν

2
φν−1 −

√
ν + 1

2
φν+1 (6.18)

This expression can then be used with the x derivative of Q(x) to give a final expression

for ∇xφν (q;x):

∇xQ(x) =
βq

kq

√
2
∇xV

′
0(x) (6.19)

∇xφν (q;x) =
βq

kq

√
2
∇xV

′
0(x)

(√
ν

2
φν−1 −

√
ν + 1

2
φν+1

)
(6.20)

The first term in equation 6.15 is then given by

− 1
MI

∑
ν

∫ ∞

−∞
φν′∇xφν .∇xψ

N,k
ν dq = − 1

MI

βq

kq

√
2
∇xV

′
0(x).

(√
ν ′ + 1

2
∇xψ

N,k
ν′+1 −

√
ν ′

2
∇xψ

N,k
ν′−1

)
(6.21)

To derive a similar expression for the second term in equation 6.15 is is necessary to find

∇2
xφν . In a similar way to that used for the first term it can be shown that

∇2
xφν =

βq

kq

√
2
∇2

xV
′
0(x)

(√
ν

2
φν−1 −

√
ν + 1

2
φν+1

)
+

β2
q

4k2
q

∣∣∇xV
′
0(x)

∣∣2 (√ν (ν − 1)φν−2 − (2ν + 1)φν +
√

(ν + 2) (ν + 1)φν+2

)
(6.22)

Which gives the following for the second term in equation 6.15

− 1
2MI

∑
ν

ψN,k
ν

∫ ∞

−∞
φν′∇2

xφνdq = − 1
2MI

βq

kq

√
2
∇2

xV
′
0(x)

(√
ν ′ + 1

2
ψN,k

ν′+1 −
√
ν ′

2
ψN,k

ν′−1

)

− 1
2MI

β2
q

4k2
q

∣∣∇xV
′
0(x)

∣∣2 (√(ν ′ + 2) (ν ′ + 1)ψN,k
ν′+2 −

(
2ν ′ + 1

)
ψN,k

ν′ +
√
ν ′ (ν ′ − 1)ψN,k

ν′−2

)
(6.23)
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Performing the integrals over q in equation 6.15 a set of equations for ψN,k
ν (x) are obtained.

These equations couple together ψN,k
ν functions with values of ν which differ by up to two.

− 1

2MI

β2
q

4k2
q

|∇xV
′
0(x)|2

√
(ν + 2) (ν + 1)ψN,k

ν+2(x)

− 1

2MI

βq

kq

√
2

√
ν + 1

2

(
2∇xV

′
0(x).∇x +∇2

xV
′
0(x)

)
ψN,k

ν+1(x)

+

(
1

2MI

β2
q

4k2
q

|∇xV
′
0(x)|2 (2ν + 1)− ∇2

x

2Mi

+ V (x, 0) + εν(x)

)
ψN,k

ν (x)

+
1

2MI

βq

kq

√
2

√
ν

2

(
2∇xV

′
0(x).∇x +∇2

xV
′
0(x)

)
ψN,k

ν−1(x)

− 1

2MI

β2
q

4k2
q

|∇xV
′
0(x)|2

√
ν (ν − 1)ψN,k

ν−2(x) = 0 (6.24)

The functions ψN,k
ν and other x dependent terms in these equations can be expressed

as Fourier transforms in reciprocal x space, as functions of the reciprocal lattice vectors

g. This results in a set of Bloch equations which can be solved to give the Fourier

components of ψN,k
ν and the energies of the total Hamiltonian, EN . The total number

of coupled states obtained will be the product of the number of plane-waves used in the

finite Fourier transforms and the number of forced harmonic oscillator functions included

in the sum in equation 6.10.

The resulting orbitals are built from a combined basis set of plane-waves and solutions to

the forced harmonic oscillator Hamiltonian.

Ψn,k (x, q) =
∑

ν

∑
g

ũN,k
ν (g)e−ig.xφν (q;x) (6.25)

The momentum matrix element P k
N,M can be calculated in this basis as

P k
N,M = −i

∫ ∫
Ψ∗

N,k (x, q)∇xΨM,k (x, q) dxdq (6.26)

= −i
∫ ∫ ∑

ν

∑
g

ũN,k,∗
ν (g)ei(g+k).xφν

∑
ν′

∑
g′

ũM,k
ν′

(
g′
)
∇xe

−i(g′+k).xφν′dxdq (6.27)

= −
∫ ∫ ∑

ν,ν′

∑
g,g′

ũN,k,∗
ν (g)ũM,k

ν′
(
g′
) (

g′ + k
)
ei(g−g′).xφνφν′dxdq

− i

∫ ∫ ∑
ν,ν′

∑
g,g′

ũN,k,∗
ν (g)ũM,k

ν′
(
g′
)
ei(g−g′).xφν∇xφν′dxdq (6.28)
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The integral over q can be carried out using the expression given in equation 6.20 and the

orthogonality of the functions φν :∫
φν∇xφν′dq =

βq

kq

√
2
∇xV

′
0(x)

∫
φν

(√
ν ′

2
φν′−1 −

√
ν ′ + 1

2
φν′+1

)
dq (6.29)

=
βq

kq

√
2
∇xV

′
0(x)

(√
ν ′

2
δν,ν′−1 +

√
ν ′ + 1

2
δν,ν′+1

)
(6.30)

The expression for the momentum matrix elements then becomes

P k
N,M = −

∑
ν

∑
g

ũN,k,∗
ν (g)ũM,k

ν (g) (g + k)

− i
βq

kq

√
2

∑
ν

∑
g,g′

ũN,k,∗
ν (g)ũM,k

ν+1

(
g′
)√ν + 1

2

∫
ei(g−g′).x∇xV

′
0(x)dx

− i
βq

kq

√
2

∑
ν

∑
g,g′

ũN,k,∗
ν (g)ũM,k

ν−1

(
g′
)√ν

2

∫
ei(g−g′).x∇xV

′
0(x)dx (6.31)

Once the energies, EN , and the momentum matrix elements, P k
N,M have been calculated

they can be used in the relation derived from non-equilibrium statistical mechanics (equa-

tion 1.39) to calculate the diffusion coefficient for a particle in the coupled potential.

6.2 An Uncoupled Basis

An alternative method to that of section 6.1 is to work in a basis set of the eigenfunctions

of the following two uncoupled Hamiltonians.

Ĥx = − 1

2Mi

∇2
x + V (x, q0) (6.32)

Ĥq = − 1

2MI

∇2
q +

1

2
kq (q − q0)

2 (6.33)

The eigenfunctions of the x dependent Hamiltonian are the same as those calculated in

section 2.3. The same method can be used to calculate the Fourier components of the

Bloch functions, and hence the wave functions and energies at any given point in k space.
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The eigenfunctions are then expressed in a plane-wave basis:

ψk,n(x) =
∑
g

ũk,n(g)e−i(g+k).x (6.34)

The eigenstates of the q dependent Hamiltonian are the wave functions and energies of a

simple harmonic oscillator with mass MI and spring constant kq.

φν(q) = Nνe
−Q2

2 Hν (Q) (6.35)

where Q is a scaled harmonic oscillator coordinate given by

Q =
βq√
2

(q − q0) (6.36)

βq is a constant given by

βq =
√

2ωMI (6.37)

Nν is the usual normalisation constant

Nν =

√
βq

2ν
√

2πν!
(6.38)

and Hν is the νth order Hermite polynomial.

The full Hamiltonian for the coupled system can be approximated with a Taylor expansion

as in the last section. It then becomes

Ĥ = Ĥx + Ĥq + V ′
0(x) (q − q0) (6.39)

The wave functions of the time-independent Schrödinger equation for the coupled system

are then expressed in a basis of the product of ψk,n and φν .

ΨN,k (x, q) =
∑
n,ν

cN,k
n,ν ψk,n(x)φν(q) (6.40)

Such that ĤΨN,k = EN,kΨN,k.

A set of simultaneous equations for the coefficients cN,k
n,ν and the energies EN,k can be

obtained by multiplying the Schrödinger equation by a specific state ΨM,k∗ and integrating

over all space (the integrals over states with different values of k are zero).
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∫ ∫ ∑
n′,ν′

cM,k∗
n′,ν′ ψ

∗
k,n′φν′

(
Ĥx + Ĥq + (q − q0)V ′

0(x)− EN,k

)∑
n,ν

cN,k
n,ν ψk,nφνdxdq = 0 (6.41)

The integrals over the Hamiltonians Ĥx and Ĥq are performed in the usual manner:

∑
n′,ν′

∑
n,ν

cM,k∗
n′,ν′ c

N,k
n,ν

(
εn,k + ωq

(
ν +

1

2

)
− EN,k

)
δn′,nδν′,ν +

∑
n′,ν′

∑
n,ν

cM,k∗
n′,ν′ c

N,k
n,ν

∫ ∫
ψ∗k,n′φν′ (q − q0)V

′
0(x)ψk,nφνdxdq = 0 (6.42)

The integrals over q can be carried out leaving only integrals over x:

∑
n′,ν′

cM,k∗
n′,ν′ c

N,k
n′,ν′

(
εn′,k + ωq

(
ν ′ +

1

2

)
− EN,k

)
+

∑
n′,ν′

∑
n,ν

cM,k∗
n′,ν′ c

N,k
n,ν

∫
φν′ (q − q0)φνdq

∫
ψ∗k,n′V

′
0(x)ψk,ndx = 0 (6.43)

∑
n′,ν′

cM,k∗
n′,ν′ c

N,k
n′,ν′

(
εn′,k + ωq

(
ν ′ +

1

2

)
− EN,k

)
+

∑
n′,ν′

∑
n

cM,k∗
n′,ν′

(
cN,k
n,ν′−1

√
ν ′

βq

+ cN,k
n,ν′+1

√
ν ′ + 1

βq

)∫
ψ∗k,n′V

′
0(x)ψk,ndx = 0 (6.44)

The remaining integral over x is can be performed in Fourier space and the coefficients

and energies can then be obtained by diagonalising a matrix with elements

Hn′ν′,nν =

(
εn′,k + ωq

(
ν ′ +

1

2

)
− EN,k

)
δn′,nδν′,ν +

√
ν + 1

βq

δν′,ν+1

∫
ψ∗k,n′V

′
0(x)ψk,ndx +

√
ν

βq

δν′,ν−1

∫
ψ∗k,n′V

′
0(x)ψk,ndx (6.45)

The number of wave functions, ΨN,k, and their energies found using this method, is the

product of the number of periodic wave functions, ψn,k, and the number of harmonic

oscillator wave functions, φν , included in the basis.

Since the functions φν have no x dependence, the momentum matrix elements of the

coupled wave functions, ΨN,k, are easily calculated in terms of the integrals over the



CHAPTER 6. COUPLING TO A HARMONIC OSCILLATOR 90

functions ψn,k discussed in section 2.3.

〈ΨM,k|p̂x|ΨN,k〉 =
∑
n′,ν′

∑
n,ν

cM,k∗
n′,ν′ c

N,k
n,ν 〈ψn′,k|p̂x|ψn,k〉 〈φν′|φν〉 (6.46)

=
∑
n′,ν′

∑
n

cM,k∗
n′,ν′ c

N,k
n,ν′ 〈ψn′,k|p̂x|ψn,k〉 (6.47)

Although this method requires an extra diagonalisation step compared to the Born-Huang

method described in section 6.1 it can be more efficient for larger systems. It is often the

case that the number of periodic wave functions, ψn,k, that need to be included in this

basis to give converged results is lower than the number of plane-waves needed to correctly

describe these wave functions. In such a case the matrix given by 6.45 is considerably

smaller than that given by the Born-Huang equations, which can become prohibitively

large for some systems.

6.3 A Model Potential

The model potential used in part 5.1 was extended to include coupling to a harmonic

oscillator. The positions of the bottoms of the two wells were made to vary with the

harmonic oscillator coordinate q such that Eoct(q) = E0
oct + αq and Etet(q) = E0

tet − αq.

As the oscillator moved in the positive direction the two wells became closer together in

energy until the “tetrahedral” well became the deepest. In the negative direction the two

wells got further apart in energy. α is a measure of the strength of coupling between the

two potentials. The harmonic oscillator has a characteristic force constant, kq and mass,

MI . The form of this potential can be seen in figure 6.1.

V (x, q) =
kq

2
q2 − 1

2
(Etet(q)− Eoct(q)) cos

(
2πx
L

)
+

1
2

(Etet(q) + Eoct(q)) cos
(

4πx
L

)
(6.48)

=
kq

2
q2 − 1

2
(
E0

tet − E0
oct

)
cos
(

2πx
L

)
+

1
2
(
E0

tet + E0
oct

)
cos
(

4πx
L

)
+ αq cos

(
2πx
L

)
(6.49)

= V (x, 0) +
kq

2
q2 + αq cos

(
2πx
L

)
(6.50)

This potential may give rise to the so-called “polaron” effect, in which the position of

the hydrogen atom in a lattice alters the potential such that the hydrogen atom becomes
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q

x

Eoct

Etet
0

LL/20

Figure 6.1: A contour plot of the dependence of the coupled potential on the harmonic
oscillator coordinate, q, and the periodic coordinate, x.

trapped in whichever well it currently resides.

The q and x derivatives of this potential can be carried out analytically and all x dependent

terms have an analytic Fourier transform. As a result the Born-Huang equations (6.24)

can be used to form a set of Bloch equations which can be solved by diagonalisation as

in part 5.1.

The resulting wave functions and energies can then be used in equation 5.5 to calculate

the diffusion coefficient of a particle with mass mH travelling in the x direction at a given

temperature.

6.3.1 Results and Discussion

Varying the Well Depths

For comparison with the results for an uncoupled system, a similar investigation to that

in part 5.3.1 was made. The value of Etet at the equilibrium position of q, E0
tet was kept at
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at -0.002 EH and the deeper well minimum (E0
oct) varied between -0.0075 EH and -0.009

EH. The potential was periodic with a box length of 6.8 a0, (3.6 Å). The plane-wave

cutoff necessary to obtain convergence remained at 0.1 EH, (2.7 eV), and the width of the

Gaussian modelling the δ-function in equation 1.39 was kept at 0.1 meV. It was found

that only 28 k-points were required to converge the diffusion coefficients.

The harmonic oscillator had a frequency of 200 cm−1 and the mass of a palladium atom.

The coupling constant between the periodic potential and the harmonic oscillator, α, was

kept at 10−3. Twenty harmonic oscillator states were included in the calculation. The

results can be seen in figure 6.2.

It can be seen that the coupling to the harmonic oscillator increases diffusion at both

high and low temperatures. If the polaron effect was causing particles to be trapped in

wells, then the diffusion coefficients would be expected to decrease upon coupling to the

oscillator. There must be other more important factors present which cause diffusion to

be increased.

The peaks found in the curves in section 5.3.1 are still present in figure 6.2 (for example

the peak in the 2D curve at Eoct = -0.0087 EH). In addition a new peak has appeared in

the 1H curve at Eoct = -0.0077 EH.

To investigate the effect of coupling further, the diffusion of 1H at three points on the

curve will be considered: at Eoct = -0.0081 EH, the peak seen in the uncoupled system;

at Eoct = -0.0077 EH, the new peak; and at Eoct = -0.0075 EH. The diffusion curves for
1H in the three potentials are shown in figure 6.3 along with the curves for the uncoupled

potential with the same values of Eoct.

In all three cases the diffusion at high temperatures is higher than in the uncoupled case.

The effective activation energies (the gradients in figure 6.3) are smaller for E0
oct = -0.0075

EH and -0.0077 EH, leading to much increased diffusion at low temperatures. This is not

seen at E0
oct = -0.0081 EH.
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Figure 6.2: The diffusion coefficients of 1H and 2D at different temperatures. The lines
without points are those calculated in part 5.3.1 included for comparison.
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The contributions to diffusion from different regions of the eigenspectrum are plotted in

figures 6.4 and 6.5. The band structures of the systems are shown in 6.6. The positions

of the main peaks in figures 6.4 and 6.5 are marked on the band structures with arrows,

along with the energy of the classical barriers (ETS).

The contributions to diffusion for E0
oct = -0.0075 EH shown in figure 6.4(a) should be

compared with those seen in figure 5.5(b). Whereas the lowest energy contribution was

at around 440 meV in the uncoupled system, there are large contributions coming from

just above 300 meV in the coupled system. By comparing with figure 6.6(a) these can be

seen to be coming from states just above the classical barrier.

In the uncoupled potential contributions in this region could only come at the band edges,

where two states became close in energy. There are now many more states in this region.

States with a large amount of dispersion cross over other dispersive states which are

shifted due to having a different phonon quantum number, ν. These crossing points give

rise to contributions to diffusion at many different energies above the barrier, leading to

both a lower activation energy and more diffusion at high temperatures.

The two peaks at E0
oct = -0.0077 EH and -0.0081 EH occur due to contributions to diffusion

from states below the classical barrier.

Figure 6.4(b) shows the contributions to diffusion when E0
oct = -0.0081 EH. Comparison

with the band structure in figure 6.6(c) shows contributions at low temperatures from

states which are considerably below the classical barrier. These are contributions from

states which are in different wells, but which have the same phonon quantum number ν.

This can be seen by looking at the states contributing to the peak at 160 meV, the 12-th

and 13-th states shown in figure 6.7. The 12-th state is the ground state in the tetrahedral

well, whilst the 13-th state is the second excited state in the octahedral well. Neither state

has nodes in the harmonic oscillator coordinate, q, so both must have large contributions

from the ν = 0 harmonic oscillator state. Such processes, which involve hops between

different proton states whilst conserving the value of ν, can be called “coherent” processes.

The largest contributions at E0
oct = -0.0081 EH now come from above the barrier processes,

even at low temperatures. The increase in contributions from the processes discussed

above for the E0
oct = -0.0075 EH potential, leads to these processes dominating diffusion,

rather than the coherent processes below the barrier.

The contributions to diffusion when E0
oct = -0.0077 EH are shown in figure 6.5. At low
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temperatures the largest contribution occurs from states at around 272 meV above the

ground state. Figure 6.6(b) shows that this contribution occurs at the crossing of a state

with very little dispersion and one with slightly more. These two states, the 35-th and

36-th, are shown in figure 6.7.

The 35-th state looks like the third excited state in the octahedral well, with two nodes

in the q dimension (ν=2). The 36-th state is more diffuse and centred in the tetrahedral

well. It has no nodes in the q direction and looks like a ν=0 state. Contributions are also

seen to occur at 297 meV and 322 meV. These are repetitions of the same states separated

by h̄ω which is 25 meV for a 200 cm−1 harmonic oscillator. Below the barrier processes

which involve a change in the phonon quantum number, ν can be called “incoherent”

processes. The incoherent processes which contribute to diffusion when E0
oct = -0.0077

EH lead to increased diffusion and a lower activation energy than would otherwise be the

case, leading to a peak in the diffusion coefficients with this potential.

At higher temperatures, above 300K, the diffusion is once again dominated by contribu-

tions arising from transitions between dispersive states above the classical barrier with

a change in phonon number, as in the two other potentials. The diffusion coefficients of

hydrogen in all three potentials are very similar in the high temperature limit.
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Figure 6.4: The contributions to the diffusion coefficient from different regions of the
eigenspectrum below 500 meV above the ground state for 1H (a)Eoct = -0.0075 EH, (b)Eoct

= -0.0081 EH.
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Figure 6.5: The contributions to the diffusion coefficient from different regions of the
eigenspectrum below 500 meV above the ground state for 1H, Eoct = -0.0077 EH.
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Figure 6.7: Contour plots of the 1H wave functions which make low temperature contri-
butions to diffusion in two different potentials, Eoct = -0.0077 EH and Eoct = -0.0081 EH.
The wave functions are in bold and are plotted on top of the underlying potential.
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Tuning the Frequency of the Oscillator

The incoherent processes described in the previous section (6.3.1) rely on there being a

gap in between two hydrogen states which are an integer multiple of h̄ω apart. It ought

to be possible to vary the oscillator frequency, ω, and cause an increase in diffusion when

incoherent processes become possible.

Diffusion coefficients were calculated using a potential similar to that in section 6.3.1, in

which below the barrier incoherent processes were shown to contribute to diffusion. (E0
tet

= -0.002 EH, E0
oct = -0.0077 EH, and α = 0.001). The frequency of the oscillator was

varied about 200 cm−1 and the results can be seen in figure 6.8.

At 100K the only significant contribution is that described in the previous section between

the 35-th and 36-th states of the system. As the frequency is altered, the relative position

of the two states changes at a rate of approximately 2h̄ω as there is a difference of two in

the phonon quantum numbers of the two states. The more diffuse state has a width of

2.3 meV, 18.6 cm−1, approximately twice the width of the peak seen at 100 K in figure

6.8. The peak occurs when the two states cross each other.

At higher temperatures other processes contribute to diffusion and the dependence of

diffusion on frequency is more complicated.
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Figure 6.8: The diffusion coefficient for 1H in a potential with E0
oct = -0.0077 EH, E0

tet

= -0.002 EH and a coupling constant, α = 0.001 as the frequency of the oscillator was
varied.
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6.4 Approximations to Exact Coupling Calculations

Although it may appear that similar results could be obtained by using a set of wave

functions which were purely the product of an eigenvector of the periodic system and one

of the harmonic oscillator, this is not the case. The integral over the momentum operator

of two states with different ν is zero. The diffusion calculated would be the same as in

the periodic potential without the harmonic oscillator.

〈ψn(x)φν(q)|p̂x|ψm(x)φν′(q)〉 = 〈ψn(x)|p̂x|ψm(x)〉 δν,ν′ (6.51)

To alter the diffusion it is necessary to have coupled wave functions which contain con-

tributions from states with different ν.

6.4.1 Franck-Condon Factors

A simple approximation can be made along the lines of the methods proposed by Franck

and Condon [76][77][78] to calculate electronic transition probabilities. It was assumed

that electronic transitions occurred instantaneously with respect to nuclear motion. As a

result the transition probability could be estimated by separating out the electronic and

nuclear degrees of freedom and including an integral over the nuclear wave functions for

the initial and final state. The nuclear wave function for the initial state was calculated

in a potential assuming the electron was in its initial state, and the nuclear wave function

for the final state was calculated using a different potential assuming the electron was in

its final state.

Transitions between hydrogen states rather than electronic states are needed to make

approximate calculations of the diffusion coefficients found in the previous sections. It

is hoped that the mass difference between hydrogen and that of the coupled harmonic

oscillator (or in a more realistic system, the mass of metal atoms through which the

hydrogen is diffusing) is large enough that the assumption that hydrogen transitions

occur without a change in the harmonic oscillator coordinate, q, is still valid. If this is

the case, then the hydrogen atom can be assumed to be in the same potential in both the

initial and final states. Only the harmonic oscillator potential will change.

A further assumption is made that the harmonic oscillator potential has only three differ-

ent equilibrium positions and frequencies. These represent potentials when the hydrogen

nucleus is in the deeper (octahedral) well, the shallower (tetrahedral) well, or spread
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between the two. The equilibrium positions and frequencies of the oscillators can be

calculated by varying q and calculating hydrogen states in the resulting periodic potential

V (x; q) =
1

2
(Etet(q)− Eoct(q)) cos

(
2πx

L

)
+

1

2
(Etet(q) + Eoct(q)) cos

(
4πx

L

)
(6.52)

Where Eoct(q) = E0
oct + αq and Etet(q) = E0

tet − αq.

The energies of the eigenstates, ε(q), were then plotted after adding the harmonic potential
1
2
kqq

2. States were identified as belonging to the octahedral or tetrahedral well, or both,

by integration of the hydrogen wave functions. Results of this procedure can be seen in

figure 6.9.
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Figure 6.9: A plot of the energies of the hydrogen atom ε against q with E0
tet = -0.002

EH, E0
oct = -0.0077 EH, ω = 200 cm−1, and α = 0.001.

The curves for the three potentials were then fitted to quadratic functions of q to give the

frequencies and equilibrium positions of the three harmonic potentials.

Using the potential defined in this chapter (equation 6.50), it can be shown that the q
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dependent part of the potential is a forced harmonic oscillator.

V (x, q) = V (x, 0) +
kq

2
q2 + αq cos

(
2πx

L

)
(6.53)

= V (x, 0) +
kq

2

(
q +

α

kq

cos

(
2πx

L

))2

− α2

2kq

cos2

(
2πx

L

)
(6.54)

= V ′ (x) +
kq

2
(q − q0(x))

2 (6.55)

Where q0(x) = − α
kq

cos
(

2πx
L

)
. This potential has the same frequency as the uncoupled

harmonic potential. However, the equilibrium position depends on the value of x. The

equilibrium positions should be roughly q0 = − α
kq

when x = 0 (at the bottom of the

deepest well), q0 = α
kq

when x = L
2

(at the bottom of the shallower well), and q0 = 0 for

states which are not bound in any one well. The frequencies should be the same in each

case. A comparison of these parameters with those calculated using the fitting technique

discussed above can be seen in table 6.1.

Table 6.1: Parameters for different potentials when E0
tet = -0.002 EH, E0

oct = -0.0077 EH,
ω = 200 cm−1, and α = 0.001.

Octahedral Tetrahedral Unbound
ω [cm−1] q0 [a0] ω [cm−1] q0 [a0] ω [cm−1] q0 [a0]

Fit 200.0 −5.93× 10−3 200.0 5.88× 10−3 200.0 3.54× 10−4

Calc. 200 −6.16× 10−3 200 6.16× 10−3 200 0

Once the parameters for the three harmonic potentials have been found, the diffusion

coefficient can be approximated by calculating the integral of two states over the momen-

tum operator. The states are given by the product of a wave function of the uncoupled

periodic potential, ψk
n(x), and a wave function of the harmonic potential chosen depending

on whether ψk
n(x) is bound in the deeper well, the shallower well, or unbound.

〈
ψk

mφν′ (ω
′, q − q′0) |p̂x|ψk

nφν (ω, q − q0)
〉

= 〈φν′ (ω
′, q − q′0) |φν (ω, q − q0)〉

〈
ψk

m|p̂x|ψk
n

〉
(6.56)

= Sν′ν

〈
ψk

m|p̂x|ψk
n

〉
(6.57)

Sν′ν are Franck-Condon factors, an overlap integral over two harmonic oscillator states

which arise from potentials with different frequencies, ω and ω′, and equilibrium posi-

tions, q0 and q′0. They can be accurately and efficiently calculated numerically using

Gauss-Hermite quadrature. The second factor in equation 6.57 is simply the integral P k
nm
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discussed in section 5.1.

The diffusion coefficient can then be calculated using the usual formula and summing over

enough harmonic oscillator states to converge the calculation.

D =

∫
dk

π

NQm2
H

∑
n,m6=n,ν,ν′

e−β(εn+h̄ω(ν+ 1
2))Sν′ν |P k

nm|2 ×

δ

(
εn

h̄
− εm

h̄
+ ω

(
ν +

1

2

)
− ω′

(
ν ′ +

1

2

))
(6.58)

Results and Discussion

The diffusion coefficients of 1H were calculated using the Franck-Condon approximations

and using the exact diagonalisation technique discussed at the start of this chapter. The

calculations were carried out with E0
tet = -0.002 EH, E0

oct = -0.0077 EH, ω = 200 cm−1

and α = 0.001 and 0.0001. The results can be seen in figure 6.10

Enhancement of diffusion over that calculated in the uncoupled system is only seen at low

temperatures. A plot of the separate contributions to diffusion from different points in

the eigenspectrum (see figure 6.11) shows that at low temperatures diffusion comes from

contributions arising from the same states as in the exact calculation in figure 6.5. The

magnitude of the contributions from these states is, however, underestimated by about

two orders of magnitude.

At higher temperatures the contributions from states between 300 meV and 400 meV

above the ground state are largely missing in the calculations using Franck-Condon factors.

Instead the contributions from above the classical barrier occur at the band edges where

the uncoupled proton wave functions become degenerate, hence the rate of diffusion is

that of the uncoupled system.

It has been assumed that states which are not bound in one well or the other, which in

general are states above the classical barrier, have the same harmonic potential. Con-

tributions are only allowed from these states if the quantum number ν is the same in

both. The exact calculations in section 6.3.1 show that contributions from incoherent

processes above the classical barrier, which are missing using this approximate method,

are important at higher temperatures.

At lower temperatures the important contributions arise from states which are bound in

different wells and have different values of ν. These contributions are included using the
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Franck-Condon factors but are severely underestimated.
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Figure 6.10: A plot of the diffusion coefficients of 1H E0
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ω = 200 cm−1.
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Figure 6.11: The contributions to the diffusion coefficient from different regions of the
eigenspectrum below 500 meV above the ground state for 1H, E0

tet = -0.002 EH, E0
oct =

-0.0077 EH, ω = 200 cm−1 and α = 0.001, using Franck-Condon factors.
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6.4.2 Perturbation Theory

Perturbation theory could be used to generate wave functions and energies for the cou-

pled system, starting from states which were products of the solutions for the uncoupled

periodic potential and harmonic oscillator. These wave functions and energies could then

be used to calculate diffusion coefficients for the coupled system as before.

Ĥ(0) = − 1

2mx

∇2
x −

1

2mq

∇2
q + V (x, 0) +

kq

2
q2 (6.59)

Ψk(0)
nν = ψk

n(x)φν(q) (6.60)

Ek(0)
nν = εk

n + h̄ω

(
ν +

1

2

)
(6.61)

Where ψn(x) is the hydrogen wave function in the potential V (x, 0) and φν(q) is a har-

monic oscillator wave function. The perturbation to this system is taken as the coupling

part of the full Hamiltonian

Ĥ(1) = αq cos

(
2πx

L

)
(6.62)

The first order correction to the energies, E
k(1)
nν , is given by the integral

〈
ψk

nφν |Ĥ(1)|ψk
nφν

〉
.

This integral is zero, since 〈φν |q|φν〉 is zero for all ν. Instead, the first order correction

to the wave functions and the second order correction to the energies are calculated.

It is important to use perturbation theory suitable for systems with degenerate states,

since only transitions between degenerate states, or states close in energy, contribute to

diffusion.

For degenerate states, it is necessary to use a set of secular equations to obtain the first

order corrections to the energies, E
(1)
nνi, and the optimal choice for the zeroth order wave

functions, Φ
k(0)
nνi =

∑
l cilΨ

k(0)
nνl (where the third index in these expressions distinguishes

between formerly degenerate states).∑
l

cil

(
E

k(1)
nνi δml −

〈
Ψk(0)

nνm|Ĥ(1)|Ψk(0)
nνl

〉)
= 0 (6.63)

In the case of degenerate states the first order correction to the energies may be non-zero.

Once this process has been carried out, the first order corrections to the wave functions,

Ψ
k(1)
nν , and the second order corrections to the energies, E

k(2)
nν , can be calculated using the

familiar expressions from Rayleigh-Schrödinger perturbation theory [79][80] in which the

corrections to the wave functions are expressed as a linear combination of the zeroth order
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wave functions.

Ψk(1)
nν =

∑′

mν′

〈
Ψ

k(0)
mν′ |Ĥ(1)|Ψk(0)

nν

〉
E

k(0)
nν − E

k(0)
mν

Ψ
k(0)
mν′ (6.64)

Ek(2)
nν =

∑′

mν′

|
〈
Ψ

k(0)
mν′ |Ĥ(1)|Ψk(0)

nν

〉
|2

E
k(0)
nν − E

k(0)
mν

(6.65)

The sums over m and ν ′ do not include terms in which m = n and ν ′ = ν or terms where

Ψ
k(0)
mν′ and Ψ

k(0)
nν are degenerate or near-degenerate wave functions.

The wave functions and energies of the perturbed system are then given by

Ψk
nν = Ψk(0)

nν + Ψk(1)
nν (6.66)

Ek
nν = Ek(0)

nν + Ek(1)
nν + Ek(2)

nν (6.67)

They can be used in the expression for the diffusion coefficients to give an estimate of the

diffusion coefficients of the coupled system.

The diffusion coefficients of 1H were calculated using perturbation theory to find the

coupled wave functions and energies. The calculations were carried out with E0
tet = -

0.002 EH, E0
oct = -0.0077 EH, ω = 200 cm−1 and α = 0.001 and 0.0001. The results can

be seen in figure 6.12

The rates of diffusion calculated using perturbation theory underestimate those calculated

from the exact wave functions and energies. Calculation of the wave functions using

equation 6.64 gives wave functions with contributions from the original wave function

with quantum number ν and wave functions with ν ′ = ν ± 1. Using these wave functions

to calculate diffusion coefficients includes contributions from states with up to ν ± 2, but

no larger. Some of the extra contributions to diffusion in the coupled system are captured,

but not all leading to an underestimate of the diffusion rates.

Separate contributions to diffusion from different points on the energy spectrum for the

calculations with α = 0.001 can be seen in figure 6.13. Comparing with the results from the

calculations using the exact wave function in figure 6.5 it can be seen that contributions

occur from interactions between states at the same places in the energy spectrum, but that

some of the contributions are missing (for example those at around 330 meV), the relative

contributions from different regions are different, and the magnitude of the contributions

throughout the energy spectrum are a lot lower at a given temperature.
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6.5 Conclusions

The one-dimensional well described in the previous chapter was coupled to a harmonic

oscillator such that the depths of the two wells varied according to the harmonic oscil-

lator coordinate. Coupling to the harmonic oscillator had a large effect on the diffusion

coefficients calculated for hydrogen and deuterium.

The inclusion of harmonic oscillator states allowed for contributions to diffusion through

a different type of process, so called “incoherent” processes. In incoherent processes

transitions can be made between hydrogen states which were previously not coincident

by gaining or losing phonons. The inclusion of incoherent processes at energies above and

below the classical diffusion barrier led to a general increase in the rate of diffusion.

The diffusion coefficients of the coupled system did not vary as much with the equilibrium

depths of the two wells as the diffusion coefficients of the uncoupled system. In general a

smooth decrease in diffusion was seen as the wells were made deeper, with some variation

caused by the inclusion of coherent or incoherent tunnelling processes below the classical

barrier energy.

Similarly the isotope effect was less dependent on the potential, deuterium almost always

diffusing at a slower rate than hydrogen.

Two methods were used to find approximate values for the diffusion coefficients of the

coupled system. An attempt was made to include the effect of the harmonic oscillator by

including Franck-Condon factors and by using perturbation theory. Neither method gave

accurate results.

The method used to find the diffusion coefficients of this simple system could be used to

look at coupling between hydrogen diffusion in a metal lattice and the phonon modes of

the lattice. The increase in diffusion seen due to the inclusion of incoherent tunnelling in

this system may also be seen in real systems such as palladium hydride.



Chapter 7

Concluding Remarks

This thesis has shown that new insights into materials containing hydrogen can be gained

by calculating the single-particle wave functions and energies of hydrogen in the material.

It is often necessary to use quantum mechanics when describing both the location and

diffusion of hydrogen and its isotopes in metal hydrides and similar materials.

An accurate potential was necessary for the calculation of the hydrogen wave functions

and energies. Density functional theory (DFT) in a plane-wave basis has been shown

to be a computationally efficient way to perform accurate calculations of the electronic

energies of periodic systems, and was used in this study to calculate the potential energy

of a hydrogen atom within a host lattice.

The calculated vibrational energy levels of hydrogen and its isotopes in palladium hydride

and niobium hydride were close to the values provided by experiments, suggesting that

the potentials calculated using DFT were accurate enough to give meaningful results.

It was shown that quantum effects are important in determining the position of the

hydrogen atom in palladium hydride and lithium imide.

The zero point energy of the hydrogen atom at the octahedral interstitial site of the palla-

dium lattice is much lower than that at the tetrahedral site. This leads to a considerable

increase in stability of the octahedral site over the tetrahedral site.

Hydrogen in lithium imide was found to occupy a different site to that predicted by X-ray

and neutron diffraction experiments. The hydrogen atoms were found to occupy sites

which formed an octahedron around the nitrogen atoms. The quantum tunnelling rate
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between these sites is fast, so a delocalised picture of the hydrogen atoms is found to be

more accurate than the classical idea of random occupation of the possible sites.

As well as providing a way to analyse the quantum effects on hydrogen location in mate-

rials, the wave functions and energies were used look at quantum effects in the diffusion of

hydrogen and its isotopes in materials. An expression for the diffusion coefficient can be

derived from the statistical mechanics of non-equilibrium systems and the wave functions

and energies used in this expression to calculate the diffusion coefficient.

This method was used to calculate the diffusion coefficients of hydrogen, deuterium, and

tritium in stoichiometric palladium and niobium hydrides. An inverse isotope effect was

found in the activation energies to diffusion in palladium, as seen in experiment.

The processes which take place in hydrogen diffusion were investigated by considering

which pairs of states contributed to diffusion in the expression used to calculate the

diffusion coefficient.

It was found that diffusion in palladium hydride was dominated by processes which in-

volved states in both the octahedral and tetrahedral sites. Some of the processes were

at energies below the classical barrier and could be classified as activated tunnelling pro-

cesses. Others were at energies above the classical energy barrier. Tunnelling between

the ground states and lower excited states in neighbouring octahedral wells only became

important at low temperatures.

The relative rates of diffusion for different isotopes was found to depend on the energy

of the pairs of states which contribute to diffusion and how much each pair contributes.

The heavier isotopes, deuterium and tritium, have a higher density of states at low en-

ergies, which favours diffusion, but also have more tightly bound states, which leads to

less diffusion. The balance of these effects determines the isotope effect observed in the

diffusion coefficients.

The diffusion of hydrogen in niobium hydride is much more dominated by tunnelling

between the ground states and low energy excited states in neighbouring sites than in

palladium hydride. This leads to an onset of non-Arrhenius behaviour in the diffusion

coefficients at higher temperatures than is seen for palladium hydride. No second site is

found to be important for diffusion in niobium hydride.

A model potential of a one-dimensional periodic potential coupled to a harmonic oscillator

was used to investigate the possible effect of coupling between phonon modes and hydrogen
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wave functions on diffusion in metal hydrides.

It was found that coherent and incoherent processes could contribute to diffusion when

coupling was present. Coherent processes involve transitions between pairs of states with

the same phonon occupation numbers, whereas incoherent processes involve transitions

in which the phonon occupation numbers change. Both coherent and incoherent pro-

cesses were seen to contribute at energies above and below the classical energy barrier to

diffusion.

Coupling to a harmonic oscillator was found to increase the rates of diffusion of hydrogen

and deuterium through the one-dimensional periodic potential. This was due to the

increase in pairs of states which could contribute to diffusion as incoherent processes were

included.

It was also found that including coupling to the harmonic oscillator reduced the strong

dependence of the diffusion coefficients to the shape of the potential which was found

when considering diffusion in the uncoupled one-dimensional potential.

The method used to calculate the diffusion coefficient of hydrogen and its isotopes in the

coupled potential could be used to calculate the diffusion coefficient in a metal hydride,

including coupling between some of the phonon modes of the lattice and the hydrogen

wave functions.

If the rate of diffusion was increased by this coupling, then the calculated diffusion coef-

ficients may be closer to experiment than in the case when coupling was neglected, and

the diffusion coefficients were, in general, underestimated.

As well as extending this research to include coupling in real systems, studies could be

made into the diffusion of hydrogen and its isotopes at different concentrations in palla-

dium and niobium, and into diffusion of hydrogen in other systems. These applications

would require a different potential to be calculated using DFT or some other method. The

diffusion of other particles with small mass such as muonium could also be calculated.
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